import gradio as gr from llama_cpp import Llama import requests llm = Llama.from_pretrained( repo_id="lmstudio-community/Llama-3.2-3B-Instruct-GGUF", filename="*Q4_K_M.gguf", verbose=True, n_ctx=32768, n_threads=2, chat_format="chatml" ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" response = llm.create_chat_completion( messages=messages, stream=True, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) message_repl = "" for chunk in response: if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: message_repl = message_repl + \ chunk['choices'][0]["delta"]["content"] yield message_repl """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()