Spaces:
Sleeping
Sleeping
File size: 5,479 Bytes
f9a8213 de4f74d 815d67b b6bd42c 0f89a2a 232bcf4 2fe3715 90b017a bd24987 815d67b bd24987 ffbab7b d4c93a0 bd24987 f7c2be1 8a9b2cb f9a8213 8a9f973 b770f4c 8a9f973 3874ecc 97be3b4 3874ecc 97be3b4 3874ecc 56cb512 d5f4db1 a1f97f0 56cb512 de4f74d 815d67b b6bd42c de4f74d 40b6e7e 381fd53 815d67b 248b867 5cde69f de4f74d 815d67b eb1decc 97be3b4 b369fe5 de4f74d eb1decc 8a9f973 5cde69f 8a9f973 de4f74d 97be3b4 8a9f973 09f23d8 8a9f973 5cde69f 97be3b4 8a9f973 5cde69f 97be3b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
import cv2
from keras.models import load_model
from keras.models import Model
from datasets import load_dataset
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
# Download and load model and encoded images
model_path = hf_hub_download(repo_id="eybro/autoencoder", filename="autoencoder_model.keras", repo_type='model')
data_path = hf_hub_download(repo_id="eybro/encoded_images", filename="X_encoded_compressed.npy", repo_type='dataset')
autoencoder = load_model(model_path)
encoded_images = np.load(data_path)
# Load and split dataset
dataset = load_dataset("eybro/images")
split_dataset = dataset['train'].train_test_split(test_size=0.2, seed=42) # 80% train, 20% test
dataset['train'] = split_dataset['train']
dataset['test'] = split_dataset['test']
# Example images
example_images = {
"Example 1": "examples/example_1.png",
}
def create_url_from_title(title: str, timestamp: int):
video_urls = load_dataset("eybro/video_urls")
df = video_urls['train'].to_pandas()
print(df.to_string())
filtered = df[df['title'] == title]
print(filtered)
base_url = filtered.iloc[0, :]["url"]
return base_url + f"&t={timestamp}s"
def find_nearest_neighbors(encoded_images, input_image, top_n=5):
"""
Find the closest neighbors to the input image in the encoded image space.
Args:
encoded_images (np.ndarray): Array of encoded images (shape: (n_samples, n_features)).
input_image (np.ndarray): The encoded input image (shape: (1, n_features)).
top_n (int): The number of nearest neighbors to return.
Returns:
List of tuples: (index, distance) of the top_n nearest neighbors.
"""
# Compute pairwise distances
distances = euclidean_distances(encoded_images, input_image.reshape(1, -1)).flatten()
# Sort by distance
nearest_neighbors = np.argsort(distances)[:top_n]
return [(index, distances[index]) for index in nearest_neighbors]
def get_image(index):
split = len(dataset["train"])
if index < split:
return dataset["train"][index]
else:
return dataset["test"][index-split]
def process_image(image):
img = np.array(image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (64, 64))
img = img.astype('float32')
img /= 255.0
img = np.expand_dims(img, axis=0)
layer_model = Model(inputs=autoencoder.input, outputs=autoencoder.layers[4].output)
encoded_array = layer_model.predict(img)
pooled_array = encoded_array.max(axis=-1)
return pooled_array # Shape: (1, n_features)
def inference(user_image=None, selected_example=None):
if user_image is not None:
input_image = process_image(user_image)
elif selected_example is not None:
example_image = load_example(selected_example)
input_image = process_image(example_image)
else:
return "Please upload an image or select an example image."
# input_image = process_image(image)
nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5)
# Print the results
print("Nearest neighbors (index, distance):")
for neighbor in nearest_neighbors:
print(neighbor)
top4 = [int(i[0]) for i in nearest_neighbors[:4]]
print(f"top 4: {top4}")
for i in top4:
im = get_image(i)
print(im["label"], im["timestamp"])
result_image = get_image(top4[0])
url = create_url_from_title(result_image['label'], result_image['timestamp'])
result = f"{result_image['label']} {result_image['timestamp']} \n{url}"
n=2
plt.figure(figsize=(8, 8))
for i, (image1, image2) in enumerate(zip(top4[:2], top4[2:])):
ax = plt.subplot(2, n, i + 1)
image1 = get_image(image1)["image"]
image2 = get_image(image2)["image"]
plt.imshow(image1)
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(image2)
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
return result
def load_example(example_name):
image_path = example_images.get(example_name)
if image_path:
return Image.open(image_path)
return None
with gr.Blocks() as demo:
gr.Markdown(
"""
# Image to Video App
Find your favorite Gordon Ramasay scene by uploading an image from the scene, the app will thereafter find a corresponding youtube video for that scene.
Or try one of our examples (unseen data for the model).
"""
)
with gr.Row():
with gr.Column():
inp_image = gr.Image(label="Upload Image")
with gr.Column():
example_selection = gr.Gallery(
value=list(example_images.values()),
label="Click an Example Image",
)
with gr.Column():
out = gr.Markdown()
def handle_inputs(user_image, selected_example):
return inference(user_image=user_image, selected_example=selected_example)
inp_image.change(handle_inputs, inputs=[inp_image, example_selection], outputs=output)
example_selection.change(handle_inputs, inputs=[inp_image, example_selection], outputs=output)
if __name__ == "__main__":
demo.launch() |