File size: 4,303 Bytes
f9a8213
de4f74d
815d67b
 
b6bd42c
0f89a2a
232bcf4
2fe3715
90b017a
bd24987
815d67b
bd24987
ffbab7b
 
d4c93a0
bd24987
 
 
 
f7c2be1
8a9b2cb
 
 
f9a8213
3874ecc
 
 
97be3b4
3874ecc
97be3b4
 
 
3874ecc
56cb512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f4db1
a1f97f0
 
 
 
56cb512
de4f74d
815d67b
 
 
 
b6bd42c
 
de4f74d
40b6e7e
381fd53
 
 
 
 
815d67b
de4f74d
f0da2a7
de4f74d
 
 
 
 
 
 
 
 
 
 
 
 
 
815d67b
eb1decc
97be3b4
 
 
 
b369fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de4f74d
eb1decc
de4f74d
97be3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import gradio as gr
import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
import cv2
from keras.models import load_model
from keras.models import Model
from datasets import load_dataset
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download

# Download and load model and encoded images
model_path = hf_hub_download(repo_id="eybro/autoencoder", filename="autoencoder_model.keras", repo_type='model')
data_path = hf_hub_download(repo_id="eybro/encoded_images", filename="X_encoded_compressed.npy", repo_type='dataset')

autoencoder = load_model(model_path)
encoded_images = np.load(data_path)

# Load and split dataset
dataset = load_dataset("eybro/images")
split_dataset = dataset['train'].train_test_split(test_size=0.2, seed=42)  # 80% train, 20% test
dataset['train'] = split_dataset['train']
dataset['test'] = split_dataset['test']

def create_url_from_title(title: str, timestamp: int):
    video_urls = load_dataset("eybro/video_urls")
    df = video_urls['train'].to_pandas()
    print(df.to_string())
    filtered = df[df['title'] == title]
    print(filtered)
    base_url = filtered.iloc[0, :]["url"]
    return base_url + f"&t={timestamp}s"

def find_nearest_neighbors(encoded_images, input_image, top_n=5):
    """
    Find the closest neighbors to the input image in the encoded image space.
    Args:
    encoded_images (np.ndarray): Array of encoded images (shape: (n_samples, n_features)).
    input_image (np.ndarray): The encoded input image (shape: (1, n_features)).
    top_n (int): The number of nearest neighbors to return.
    Returns:
    List of tuples: (index, distance) of the top_n nearest neighbors.
    """
    # Compute pairwise distances
    distances = euclidean_distances(encoded_images, input_image.reshape(1, -1)).flatten()

    # Sort by distance
    nearest_neighbors = np.argsort(distances)[:top_n]
    return [(index, distances[index]) for index in nearest_neighbors]

def get_image(index):
    split = len(dataset["train"])
    if index < split:
        return dataset["train"][index]
    else:
        return dataset["test"][index-split]

def process_image(image):
    img = np.array(image)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  
    img = cv2.resize(img, (64, 64))  
    img = img.astype('float32')  
    img /= 255.0
    img = np.expand_dims(img, axis=0)

    layer_model = Model(inputs=autoencoder.input, outputs=autoencoder.layers[4].output)

    encoded_array = layer_model.predict(img) 

    pooled_array = encoded_array.max(axis=-1)
    return pooled_array  # Shape: (1, n_features)
    
def inference(image):
    input_image = process_image(image)

    nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5)
    
    # Print the results
    print("Nearest neighbors (index, distance):")
    for neighbor in nearest_neighbors:
        print(neighbor)
    
    top4 = [int(i[0]) for i in nearest_neighbors[:4]]
    print(f"top 4: {top4}")
    
    for i in top4:
      im = get_image(i)
      print(im["label"], im["timestamp"])

    result_image = get_image(top4[0])
    url = create_url_from_title(result_image['label'], result_image['timestamp'])
    result = f"{result_image['label']} {result_image['timestamp']} \n{url}"
    #result =  f"[This is a link to the video]({url})"
    
    n=2
    plt.figure(figsize=(8, 8))
    for i, (image1, image2) in enumerate(zip(top4[:2], top4[2:])):
        ax = plt.subplot(2, n, i + 1)
        image1 = get_image(image1)["image"]
        image2 = get_image(image2)["image"]
    
        plt.imshow(image1)
        plt.gray()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    
        ax = plt.subplot(2, n, i + 1 + n)
        plt.imshow(image2)
        plt.gray()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    
    return result
    
with gr.Blocks() as demo:
    gr.Markdown(
    """
    # Image to Video App
    Upload an image from a Gordon Ramsay show to find the corresponding youtube video
    """)
    with gr.Column(scale=1):
        inp = gr.Image(label='Upload image')
    with gr.Column(scale=1):
        out = gr.Markdown()
    inp.change(inference, inp, out)

if __name__ == "__main__":
    demo.launch()