Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,19 +7,11 @@ from keras.models import Model
|
|
7 |
from datasets import load_dataset
|
8 |
from sklearn.cluster import KMeans
|
9 |
import matplotlib.pyplot as plt
|
10 |
-
import pickle
|
11 |
|
12 |
autoencoder = load_model("autoencoder_model.keras")
|
13 |
encoded_images = np.load("X_encoded_compressed.npy")
|
14 |
|
15 |
-
|
16 |
-
# dataset with the split index
|
17 |
-
with open("dataset_with_split.pkl", "rb") as f:
|
18 |
-
data = pickle.load(f)
|
19 |
-
|
20 |
-
dataset = data['dataset']
|
21 |
-
split = data['split']
|
22 |
-
|
23 |
|
24 |
num_clusters = 10 # Choose the number of clusters
|
25 |
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
@@ -69,7 +61,7 @@ def inference(image):
|
|
69 |
""""""
|
70 |
# input_image = process_image(image)
|
71 |
|
72 |
-
input_image = encoded_images[
|
73 |
|
74 |
nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5)
|
75 |
|
|
|
7 |
from datasets import load_dataset
|
8 |
from sklearn.cluster import KMeans
|
9 |
import matplotlib.pyplot as plt
|
|
|
10 |
|
11 |
autoencoder = load_model("autoencoder_model.keras")
|
12 |
encoded_images = np.load("X_encoded_compressed.npy")
|
13 |
|
14 |
+
dataset = load_dataset("eybro/images-split")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
num_clusters = 10 # Choose the number of clusters
|
17 |
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
|
|
61 |
""""""
|
62 |
# input_image = process_image(image)
|
63 |
|
64 |
+
input_image = encoded_images[2000]
|
65 |
|
66 |
nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5)
|
67 |
|