Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from sklearn.cluster import KMeans
|
|
9 |
|
10 |
autoencoder = load_model("autoencoder_model.keras")
|
11 |
encoded_images = np.load("X_encoded_compressed.npy")
|
|
|
12 |
dataset = load_dataset('eybro/images')
|
13 |
|
14 |
num_clusters = 10 # Choose the number of clusters
|
@@ -57,8 +58,10 @@ def process_image(image):
|
|
57 |
return pooled_array # Shape: (1, n_features)
|
58 |
|
59 |
def inference(image):
|
|
|
|
|
60 |
|
61 |
-
input_image =
|
62 |
|
63 |
nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5)
|
64 |
|
|
|
9 |
|
10 |
autoencoder = load_model("autoencoder_model.keras")
|
11 |
encoded_images = np.load("X_encoded_compressed.npy")
|
12 |
+
print(encoded_images.shape)
|
13 |
dataset = load_dataset('eybro/images')
|
14 |
|
15 |
num_clusters = 10 # Choose the number of clusters
|
|
|
58 |
return pooled_array # Shape: (1, n_features)
|
59 |
|
60 |
def inference(image):
|
61 |
+
""""""
|
62 |
+
# input_image = process_image(image)
|
63 |
|
64 |
+
input_image = encoded_images[1010]
|
65 |
|
66 |
nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5)
|
67 |
|