import gradio as gr import numpy as np from sklearn.metrics.pairwise import euclidean_distances import cv2 from keras.models import load_model autoencoder = load_model("autoencoder_model.keras") encoded_images = np.load("X_encoded_compressed.npy") def find_nearest_neighbors(encoded_images, input_image, top_n=5): """ Find the closest neighbors to the input image in the encoded image space. Args: encoded_images (np.ndarray): Array of encoded images (shape: (n_samples, n_features)). input_image (np.ndarray): The encoded input image (shape: (1, n_features)). top_n (int): The number of nearest neighbors to return. Returns: List of tuples: (index, distance) of the top_n nearest neighbors. """ # Compute pairwise distances distances = euclidean_distances(encoded_images, input_image.reshape(1, -1)).flatten() # Sort by distance nearest_neighbors = np.argsort(distances)[:top_n] return [(index, distances[index]) for index in nearest_neighbors] def get_image(index): split = len(dataset["train"]) if index < split: return dataset["train"][index] else: return dataset["test"][index-split] def process_image(image): img = np.array(image) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (64, 64)) img = img.astype('float32') img /= 255.0 img = np.expand_dims(img, axis=0) encoded_features = autoencoder.predict(img) return encoded_features def inference(image): input_image = process_image(image) nearest_neighbors = find_nearest_neighbors(encoded_images, input_image, top_n=5) # Print the results print("Nearest neighbors (index, distance):") for neighbor in nearest_neighbors: print(neighbor) top4 = [int(i[0]) for i in nearest_neighbors[:4]] print(f"top 4: {top4}") for i in top4: im = get_image(i) print(im["label"], im["timestamp"]) result_image = get_image(top4[0]) result = result_image['label'] + result_image['timestamp'] return result demo = gr.Interface(fn=inference, inputs=gr.Image(label='Upload image'), outputs="text") demo.launch()