Spaces:
Runtime error
Runtime error
File size: 1,401 Bytes
c4cc804 2b949d1 3075cc3 2b949d1 65d5285 2b949d1 65d5285 42a5fd0 2b949d1 42a5fd0 e89ebe2 3eb0af5 2b949d1 42a5fd0 3eb0af5 bbb69ec 28025a0 3eb0af5 42a5fd0 3eb0af5 42a5fd0 3eb0af5 e054aa0 3eb0af5 2b949d1 42a5fd0 65d5285 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from diffusers import StableDiffusionXLPipeline
import torch
import gradio as gr
# Load the model with forced download
model_id = "RunDiffusion/Juggernaut-X-v10"
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float32, force_download=True)
pipe = pipe.to("cpu")
def text_to_image(prompt, negative_prompt, steps, guidance_scale, add_4k_masterpiece):
if add_4k_masterpiece:
prompt += ", 4k, (masterpiece)"
image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=guidance_scale).images[0]
return image
gradio_interface = gr.Interface(
fn=text_to_image,
inputs=[
gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here..."),
gr.Textbox(label="Negative Prompt", lines=2, placeholder="What to exclude from the image..."),
gr.Slider(minimum=1, maximum=65, value=50, label="Steps", step=1),
gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale", step=0.1),
gr.Checkbox(label="Add recommended prompt items (4k, masterpiece)", value=False)
],
outputs=gr.Image(type="pil", show_download_button=True),
examples=[
["magical kitten, 4k, high quality, (masterpiece)", "", 50, 7.5, False],
],
cache_examples=False,
theme=gr.themes.Soft()
)
# Launch the Gradio app with share=True
gradio_interface.launch(share=True) |