Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import pipeline | |
from transformers import VitsModel, AutoTokenizer | |
#import torch | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
# load text-to-speech checkpoint | |
model = VitsModel.from_pretrained("facebook/mms-tts-spa") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa") | |
def translate(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"es"}) | |
return outputs["text"] | |
def synthesise(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
speech = model(**inputs).waveform | |
return speech[0].cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return model.config.sampling_rate, synthesised_speech | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's | |
[MMS TTS](https://huggingface.co/facebook/mms-tts-spa) model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources=["microphone"], type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources=["upload"], type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |