ezrab commited on
Commit
10c353c
·
1 Parent(s): 917f36d

Change output language to spanish.

Browse files
Files changed (1) hide show
  1. app.py +15 -17
app.py CHANGED
@@ -3,40 +3,38 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
 
41
 
42
  title = "Cascaded STST"
@@ -51,7 +49,7 @@ demo = gr.Blocks()
51
 
52
  mic_translate = gr.Interface(
53
  fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
  title=title,
57
  description=description,
@@ -59,7 +57,7 @@ mic_translate = gr.Interface(
59
 
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
  examples=[["./example.wav"]],
65
  title=title,
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import pipeline
7
+ from transformers import VitsModel, AutoTokenizer
8
+ #import torch
9
 
10
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
 
12
  # load speech translation checkpoint
13
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
 
15
+ # load text-to-speech checkpoint
16
+ model = VitsModel.from_pretrained("facebook/mms-tts-spa")
17
+ tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
 
 
 
 
 
18
 
19
 
20
  def translate(audio):
21
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"es"})
22
  return outputs["text"]
23
 
24
 
25
  def synthesise(text):
26
+ inputs = tokenizer(text, return_tensors="pt")
27
+
28
+ with torch.no_grad():
29
+ speech = model(**inputs).waveform
30
+ return speech[0].cpu()
31
 
32
 
33
  def speech_to_speech_translation(audio):
34
  translated_text = translate(audio)
35
  synthesised_speech = synthesise(translated_text)
36
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
37
+ return model.config.sampling_rate, synthesised_speech
38
 
39
 
40
  title = "Cascaded STST"
 
49
 
50
  mic_translate = gr.Interface(
51
  fn=speech_to_speech_translation,
52
+ inputs=gr.Audio(sources=["microphone"], type="filepath"),
53
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
54
  title=title,
55
  description=description,
 
57
 
58
  file_translate = gr.Interface(
59
  fn=speech_to_speech_translation,
60
+ inputs=gr.Audio(sources=["upload"], type="filepath"),
61
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
62
  examples=[["./example.wav"]],
63
  title=title,