import gradio as gr from PIL import Image import diffusers import torch from diffusers import StableDiffusionPipeline # Load the model model_id = "faalbane/kopper-kreations-custom-sd-v-2-1-style-v2" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") def inference(prompt, num_samples): all_images = [] prompt_update = 'kkstyle2, ' + prompt images = pipe(prompt_update, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images all_images.extend(images) return all_images # Create Gradio interface iface = gr.Interface( fn=inference, inputs=["textbox", "slider"], outputs="gallery", ) iface.launch()