Spaces:
Running
Running
File size: 1,325 Bytes
4f6e486 d23d710 59e5631 4f6e486 59e5631 4f6e486 d23d710 4f6e486 8001894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
title: Music Splitter
emoji: ๐ถ
colorFrom: indigo
colorTo: yellow
sdk: docker
pinned: true
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# Music Source Splitter ๐ถ
<a href="https://huggingface.co/spaces/fabiogra/st-music-splitter"><img src="https://img.shields.io/badge/๐ค%20Hugging%20Face-Spaces-blue" alt="Hugging Face Spaces"></a>
This is a streamlit demo of the [Music Source Separation](https://huggingface.co/spaces/fabiogra/st-music-splitter).
The model can separate the vocals, drums, bass, and other from a music track.
## Usage
You can use the demo [here](https://huggingface.co/spaces/fabiogra/st-music-splitter), or run it locally with:
```bash
streamlit run app.py
```
> **Note**: In order to run the demo locally, you need to install the dependencies with `pip install -r requirements.txt`.
## How it works
The app uses a pretrained model called Hybrid Spectrogram and Waveform Source Separation from <a href="https://github.com/facebookresearch/demucs">facebook/htdemucs</a>.
## Acknowledgements
- HtDemucs model from <a href="https://github.com/facebookresearch/demucs">facebook/htdemucs</a>
- Streamlit Audio Recorder from <a href="https://github.com/stefanrmmr/streamlit_audio_recorder">stefanrmmr/streamlit_audio_recorder</a> |