File size: 5,976 Bytes
59e5631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import sys
from pathlib import Path
from typing import List

from dora.log import fatal
import torch as th

from demucs.apply import apply_model, BagOfModels
from demucs.audio import save_audio
from demucs.pretrained import get_model_from_args, ModelLoadingError
from demucs.separate import load_track


def separator(
    tracks: List[Path],
    out: Path,
    model: str,
    device: str,
    shifts: int,
    overlap: float,
    stem: str,
    int24: bool,
    float32: bool,
    clip_mode: str,
    mp3: bool,
    mp3_bitrate: int,
    jobs: int,
    verbose: bool,
):
    """Separate the sources for the given tracks

    Args:
        tracks (Path): Path to tracks
        out (Path): Folder where to put extracted tracks. A subfolder with the model name will be created.
        model (str): Model name
        device (str): Device to use, default is cuda if available else cpu
        shifts (int): Number of random shifts for equivariant stabilization. Increase separation time but improves quality for Demucs. 10 was used in the original paper.
        overlap (float): Overlap
        stem (str): Only separate audio into {STEM} and no_{STEM}.
        int24 (bool): Save wav output as 24 bits wav.
        float32 (bool): Save wav output as float32 (2x bigger).
        clip_mode (str): Strategy for avoiding clipping: rescaling entire signal if necessary  (rescale) or hard clipping (clamp).
        mp3 (bool): Convert the output wavs to mp3.
        mp3_bitrate (int): Bitrate of converted mp3.
        jobs (int): Number of jobs. This can increase memory usage but will be much faster when multiple cores are available.
        verbose (bool): Verbose
    """
    args = argparse.Namespace()
    args.tracks = tracks
    args.out = out
    args.model = model
    args.device = device
    args.shifts = shifts
    args.overlap = overlap
    args.stem = stem
    args.int24 = int24
    args.float32 = float32
    args.clip_mode = clip_mode
    args.mp3 = mp3
    args.mp3_bitrate = mp3_bitrate
    args.jobs = jobs
    args.verbose = verbose
    args.filename = "{track}/{stem}.{ext}"
    args.split = True
    args.segment = None
    args.name = model
    args.repo = None

    try:
        model = get_model_from_args(args)
    except ModelLoadingError as error:
        fatal(error.args[0])

    if args.segment is not None and args.segment < 8:
        fatal("Segment must greater than 8. ")

    if ".." in args.filename.replace("\\", "/").split("/"):
        fatal('".." must not appear in filename. ')

    if isinstance(model, BagOfModels):
        print(
            f"Selected model is a bag of {len(model.models)} models. "
            "You will see that many progress bars per track."
        )
        if args.segment is not None:
            for sub in model.models:
                sub.segment = args.segment
    else:
        if args.segment is not None:
            model.segment = args.segment

    model.cpu()
    model.eval()

    if args.stem is not None and args.stem not in model.sources:
        fatal(
            'error: stem "{stem}" is not in selected model. STEM must be one of {sources}.'.format(
                stem=args.stem, sources=", ".join(model.sources)
            )
        )
    out = args.out / args.name
    out.mkdir(parents=True, exist_ok=True)
    print(f"Separated tracks will be stored in {out.resolve()}")
    for track in args.tracks:
        if not track.exists():
            print(
                f"File {track} does not exist. If the path contains spaces, "
                'please try again after surrounding the entire path with quotes "".',
                file=sys.stderr,
            )
            continue
        print(f"Separating track {track}")
        wav = load_track(track, model.audio_channels, model.samplerate)

        ref = wav.mean(0)
        wav = (wav - ref.mean()) / ref.std()
        sources = apply_model(
            model,
            wav[None],
            device=args.device,
            shifts=args.shifts,
            split=args.split,
            overlap=args.overlap,
            progress=True,
            num_workers=args.jobs,
        )[0]
        sources = sources * ref.std() + ref.mean()

        if args.mp3:
            ext = "mp3"
        else:
            ext = "wav"
        kwargs = {
            "samplerate": model.samplerate,
            "bitrate": args.mp3_bitrate,
            "clip": args.clip_mode,
            "as_float": args.float32,
            "bits_per_sample": 24 if args.int24 else 16,
        }
        if args.stem is None:
            for source, name in zip(sources, model.sources):
                stem = out / args.filename.format(
                    track=track.name.rsplit(".", 1)[0],
                    trackext=track.name.rsplit(".", 1)[-1],
                    stem=name,
                    ext=ext,
                )
                stem.parent.mkdir(parents=True, exist_ok=True)
                save_audio(source, str(stem), **kwargs)
        else:
            sources = list(sources)
            stem = out / args.filename.format(
                track=track.name.rsplit(".", 1)[0],
                trackext=track.name.rsplit(".", 1)[-1],
                stem=args.stem,
                ext=ext,
            )
            stem.parent.mkdir(parents=True, exist_ok=True)
            save_audio(sources.pop(model.sources.index(args.stem)), str(stem), **kwargs)
            # Warning : after poping the stem, selected stem is no longer in the list 'sources'
            other_stem = th.zeros_like(sources[0])
            for i in sources:
                other_stem += i
            stem = out / args.filename.format(
                track=track.name.rsplit(".", 1)[0],
                trackext=track.name.rsplit(".", 1)[-1],
                stem="no_" + args.stem,
                ext=ext,
            )
            stem.parent.mkdir(parents=True, exist_ok=True)
            save_audio(other_stem, str(stem), **kwargs)