import os from pathlib import Path from typing import List from loguru import logger as log import streamlit as st from footer import footer from header import header from helpers import ( load_audio_segment, load_list_of_songs, plot_audio, st_local_audio, url_is_valid, ) from service.demucs_runner import separator from service.vocal_remover.runner import load_model, separate from streamlit_option_menu import option_menu label_sources = { "no_vocals.mp3": "🎶 Instrumental", "vocals.mp3": "🎤 Vocals", "drums.mp3": "🥁 Drums", "bass.mp3": "🎸 Bass", "guitar.mp3": "🎸 Guitar", "piano.mp3": "🎹 Piano", "other.mp3": "🎶 Other", } separation_mode_to_model = { "Vocals & Instrumental (Faster)": ("vocal_remover", ["vocals.mp3", "no_vocals.mp3"]), "Vocals & Instrumental (High Quality, Slower)": ("htdemucs", ["vocals.mp3", "no_vocals.mp3"]), "Vocals, Drums, Bass & Other (Slower)": ( "htdemucs", ["vocals.mp3", "drums.mp3", "bass.mp3", "other.mp3"], ), "Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)": ( "htdemucs_6s", ["vocals.mp3", "drums.mp3", "bass.mp3", "guitar.mp3", "piano.mp3", "other.mp3"], ), } extensions = ["mp3", "wav", "ogg", "flac"] out_path = Path("/tmp") in_path = Path("/tmp") @st.cache_data(show_spinner=False) def get_sources(path, file_sources): sources = {} for file in file_sources: fullpath = path / file if fullpath.exists(): sources[file] = fullpath return sources def reset_execution(): st.session_state.executed = False def show_results(model_name: str, dir_name_output: str, file_sources: List): sources = get_sources(out_path / Path(model_name) / dir_name_output, file_sources) tab_sources = st.tabs([f"**{label_sources.get(k)}**" for k in sources.keys()]) for i, (file, pathname) in enumerate(sources.items()): with tab_sources[i]: cols = st.columns(2) with cols[0]: auseg = load_audio_segment(pathname, "mp3") st.image( plot_audio( auseg, 32767, file=file, model_name=model_name, dir_name_output=dir_name_output, ), use_column_width="always", ) with cols[1]: st_local_audio(pathname, key=f"output_{file}_{dir_name_output}") log.info(f"Displaying results for {dir_name_output} - {model_name}") def body(): filename = None name_song = None st.markdown( """""", unsafe_allow_html=True, ) cols = st.columns([1, 3, 2, 1]) with cols[1]: with st.columns([1, 8, 1])[1]: option = option_menu( menu_title=None, options=["Upload File", "From URL", "Examples"], icons=["cloud-upload-fill", "link-45deg", "music-note-list"], orientation="horizontal", styles={ "container": { "width": "100%", "height": "3.5rem", "margin": "0px", "padding": "0px", }, "icon": {"font-size": "1rem"}, "nav-link": { "display": "flex", "height": "3rem", "justify-content": "center", "align-items": "center", "text-align": "center", "flex-direction": "column", "font-size": "1rem", "padding-left": "0px", "padding-right": "0px", }, }, key="option_separate", ) if option == "Upload File": uploaded_file = st.file_uploader( "Choose a file", type=extensions, key="file", help="Supported formats: mp3, wav, ogg, flac.", ) if uploaded_file is not None: with st.spinner("Loading audio..."): with open(in_path / uploaded_file.name, "wb") as f: f.write(uploaded_file.getbuffer()) filename = uploaded_file.name st.audio(uploaded_file) elif option == "From URL": url = st.text_input( "Paste the URL of the audio file", key="url_input", help="Supported formats: mp3, wav, ogg, flac.", ) if url != "" and url_is_valid(url): with st.spinner("Downloading audio..."): filename = url.split("/")[-1] os.system(f"wget -q -O {in_path / filename} {url}") st_local_audio(in_path / filename, key="input_from_url") elif option == "Examples": samples_song = load_list_of_songs(path="separate_songs.json") if samples_song is not None: name_song = st.selectbox( label="Select a song", options=list(samples_song.keys()), format_func=lambda x: x.replace("_", " "), index=1, key="select_example", ) if (Path("/tmp") / name_song).exists(): st_local_audio(Path("/tmp") / name_song, key=f"input_from_sample_{name_song}") else: name_song = None with cols[2]: separation_mode = st.selectbox( "Choose the separation mode", [ "Vocals & Instrumental (Faster)", "Vocals & Instrumental (High Quality, Slower)", "Vocals, Drums, Bass & Other (Slower)", "Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)", ], on_change=reset_execution(), key="separation_mode", ) if separation_mode == "Vocals & Instrumental (Faster)": max_duration = 30 else: max_duration = 15 model_name, file_sources = separation_mode_to_model[separation_mode] if filename is not None: song = load_audio_segment(in_path / filename, filename.split(".")[-1]) n_secs = round(len(song) / 1000) if os.environ.get("ENV_LIMITATION", False): with cols[2]: start_time = st.number_input( "Choose the start time", min_value=0, max_value=n_secs, step=1, value=0, help=f"Maximum duration is {max_duration} seconds for this separation mode. Duplicate this space to remove any limit.", format="%d", ) st.session_state.start_time = start_time end_time = min(start_time + max_duration, n_secs) song = song[start_time * 1000 : end_time * 1000] st.info( f"Audio source will be processed from {start_time} to {end_time} seconds. Duplicate this space to remove any limit.", icon="⏱", ) else: start_time = 0 end_time = n_secs with st.columns([2, 1, 2])[1]: execute = st.button( "Separate Music Sources 🎶", type="primary", use_container_width=True ) if execute or st.session_state.executed: if execute: st.session_state.executed = False if not st.session_state.executed: log.info(f"{option} - Separating {filename} with {separation_mode}...") song.export(in_path / filename, format=filename.split(".")[-1]) with st.columns([1, 1, 1])[1]: with st.spinner("Separating source audio, it will take a while..."): if model_name == "vocal_remover": model, device = load_model(pretrained_model="baseline.pth") separate( input=in_path / filename, model=model, device=device, output_dir=out_path, ) else: stem = None if separation_mode == "Vocals & Instrumental (High Quality, Slower)": stem = "vocals" separator( tracks=[in_path / filename], out=out_path, model=model_name, shifts=1, overlap=0.5, stem=stem, int24=False, float32=False, clip_mode="rescale", mp3=True, mp3_bitrate=320, verbose=True, start_time=start_time, end_time=end_time, ) dir_name_output = ".".join(filename.split(".")[:-1]) filename = None st.session_state.executed = True show_results(model_name, dir_name_output, file_sources) elif name_song is not None and option == "Examples": show_results(model_name, name_song, file_sources) if __name__ == "__main__": header() body() footer()