Spaces:
Sleeping
Sleeping
GitHub Actions
commited on
Commit
·
947b4e0
1
Parent(s):
03cf173
Sync API from main repo
Browse files- fast.py +17 -1
- preproc.py +15 -13
fast.py
CHANGED
@@ -2,7 +2,7 @@ from fastapi import FastAPI, File, UploadFile, HTTPException
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
|
4 |
from utils import load_model_by_type, encoder_from_model
|
5 |
-
from preproc import label_decoding
|
6 |
import pandas as pd
|
7 |
from io import StringIO
|
8 |
from pathlib import Path
|
@@ -74,6 +74,22 @@ async def predict(model_name: str, filepath_csv: UploadFile = File(...)):
|
|
74 |
|
75 |
return {"prediction": y_pred}
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# @app.post("/predict_multibeats")
|
79 |
# async def predict_multibeats(model_name: str, filepath_csv: UploadFile = File(...)):
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
|
4 |
from utils import load_model_by_type, encoder_from_model
|
5 |
+
from preproc import label_decoding, apple_csv_to_data, apple_extract_beats
|
6 |
import pandas as pd
|
7 |
from io import StringIO
|
8 |
from pathlib import Path
|
|
|
74 |
|
75 |
return {"prediction": y_pred}
|
76 |
|
77 |
+
@app.post("/predict_multibeats")
|
78 |
+
async def predict_multibeats(model_name: str, filepath_csv: UploadFile = File(...)):
|
79 |
+
model = app.state.model = model_loader(model_name)
|
80 |
+
|
81 |
+
# Read the uploaded CSV file
|
82 |
+
file_content = await filepath_csv.read()
|
83 |
+
# X = pd.read_csv(StringIO(file_content.decode('utf-8')))
|
84 |
+
X, sample_rate = apple_csv_to_data(file_content)
|
85 |
+
beats = apple_extract_beats(X, sample_rate)
|
86 |
+
y_pred = model.predict_with_pipeline(beats)
|
87 |
+
|
88 |
+
# Decode prediction using absolute path
|
89 |
+
|
90 |
+
y_pred = label_decoding(values=y_pred, path=encoder_cache[model_name])
|
91 |
+
|
92 |
+
return {"prediction": y_pred}
|
93 |
|
94 |
# @app.post("/predict_multibeats")
|
95 |
# async def predict_multibeats(model_name: str, filepath_csv: UploadFile = File(...)):
|
preproc.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
from tslearn.utils import to_time_series_dataset
|
2 |
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
|
3 |
import pickle
|
4 |
-
from wfdb import
|
5 |
from sklearn import preprocessing
|
6 |
from scipy.signal import resample
|
|
|
|
|
7 |
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
@@ -20,19 +22,19 @@ def preproc(X):
|
|
20 |
X = scaler.fit_transform(X)
|
21 |
return X.reshape(in_shape)
|
22 |
|
23 |
-
def apple_csv_to_data(
|
24 |
# extract sampling rate
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
X = pd.read_csv(
|
36 |
return X, sample_rate
|
37 |
|
38 |
def apple_trim_join(X, sample_rate=512, ns=2):
|
|
|
1 |
from tslearn.utils import to_time_series_dataset
|
2 |
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
|
3 |
import pickle
|
4 |
+
from wfdb import processing
|
5 |
from sklearn import preprocessing
|
6 |
from scipy.signal import resample
|
7 |
+
from io import StringIO
|
8 |
+
|
9 |
|
10 |
import numpy as np
|
11 |
import pandas as pd
|
|
|
22 |
X = scaler.fit_transform(X)
|
23 |
return X.reshape(in_shape)
|
24 |
|
25 |
+
def apple_csv_to_data(file_content):
|
26 |
# extract sampling rate
|
27 |
+
|
28 |
+
for il,line in enumerate(file_content.decode('utf-8').splitlines()):
|
29 |
+
if line.startswith("Sample Rate"):
|
30 |
+
# Extract the sample rate
|
31 |
+
sample_rate = int(line.split(",")[1].split()[0]) # Split and get the numerical part
|
32 |
+
print(f"Sample Rate: {sample_rate}")
|
33 |
+
break
|
34 |
+
if il > 30:
|
35 |
+
print("Could not find sample rate in first 30 lines")
|
36 |
+
return None, None
|
37 |
+
X = pd.read_csv(StringIO(file_content.decode('utf-8')), skiprows=14, header=None)
|
38 |
return X, sample_rate
|
39 |
|
40 |
def apple_trim_join(X, sample_rate=512, ns=2):
|