Spaces:
Sleeping
Sleeping
GitHub Actions
commited on
Commit
·
d769fbc
1
Parent(s):
68eda41
Sync API from main repo
Browse files- .gitattributes +0 -35
- Dockerfile +17 -0
- README.md +0 -14
- __init__.py +0 -0
- fast.py +55 -0
- params.py +10 -0
- preproc.py +21 -0
- requirements.txt +10 -0
- utils.py +40 -0
- wrappers.py +51 -0
.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight Python image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the API code and dependencies
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install Python dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Expose the API port
|
14 |
+
EXPOSE 8000
|
15 |
+
|
16 |
+
# Run the FastAPI server with Uvicorn
|
17 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
README.md
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Hadt Api
|
3 |
-
emoji: 👀
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: pink
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
license: mit
|
9 |
-
short_description: API for Heart Arrhythmia Detection Tools
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
-
|
14 |
-
Dummy change
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__init__.py
ADDED
File without changes
|
fast.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
|
4 |
+
from utils import load_model_by_type, encoder_from_model
|
5 |
+
from preproc import label_decoding
|
6 |
+
import pandas as pd
|
7 |
+
from io import StringIO
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
# Get the absolute path to the package directory
|
11 |
+
PACKAGE_ROOT = Path(__file__).parent.parent.parent
|
12 |
+
MODEL_DIR = PACKAGE_ROOT / "models"
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Use absolute paths with Path objects
|
17 |
+
model_cache = {}
|
18 |
+
encoder_cache = {}
|
19 |
+
HF_REPO_ID = "your-username/your-model-repo"
|
20 |
+
|
21 |
+
app.state.model = None # Initialize as None, load on first request
|
22 |
+
|
23 |
+
@app.get("/")
|
24 |
+
def root():
|
25 |
+
return dict(greeting="Hello")
|
26 |
+
|
27 |
+
@app.post("/predict")
|
28 |
+
async def predict(model_name: str, filepath_csv: UploadFile = File(...)):
|
29 |
+
# Load model if not already loaded
|
30 |
+
model_path = MODEL_DIR / f"{model_name}"
|
31 |
+
encoder_name = encoder_from_model(model_name)
|
32 |
+
encoder_path = MODEL_DIR / encoder_name
|
33 |
+
|
34 |
+
# if model in model_path, load it, otherwise download it from HF
|
35 |
+
if model_name not in model_cache:
|
36 |
+
try:
|
37 |
+
if not model_path.exists():
|
38 |
+
model_path = hf_hub_download(repo_id=model_name, filename=f"{model_name}")
|
39 |
+
encoder_path = hf_hub_download(repo_id=model_name, filename=f"{encoder_name}")
|
40 |
+
model_cache[model_name] = load_model_by_type(model_path)
|
41 |
+
encoder_cache[model_name] = encoder_path
|
42 |
+
except Exception as e:
|
43 |
+
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
|
44 |
+
model = app.state.model = model_cache[model_name]
|
45 |
+
|
46 |
+
# Read the uploaded CSV file
|
47 |
+
file_content = await filepath_csv.read()
|
48 |
+
X = pd.read_csv(StringIO(file_content.decode('utf-8')), header=None).T
|
49 |
+
y_pred = model.predict_with_pipeline(X)
|
50 |
+
|
51 |
+
# Decode prediction using absolute path
|
52 |
+
|
53 |
+
y_pred = label_decoding(value=y_pred[0], path=encoder_cache[model_name])
|
54 |
+
|
55 |
+
return {"prediction": y_pred}
|
params.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# GCP Project
|
4 |
+
GCP_PROJECT=os.environ.get("GCP_PROJECT")
|
5 |
+
|
6 |
+
# Cloud Storage
|
7 |
+
GOOGLE_APPLICATION_CREDENTIALS=os.environ.get('GOOGLE_APPLICATION_CREDENTIALS')
|
8 |
+
BUCKET_NAME=os.environ.get('BUCKET_NAME')
|
9 |
+
BUCKET_NAME_MODELS=os.environ.get('BUCKET_NAME_MODELS')
|
10 |
+
LOCAL_REGISTRY_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)))
|
preproc.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tslearn.utils import to_time_series_dataset
|
2 |
+
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
def preproc_single(X):
|
6 |
+
# to be called in inference/api
|
7 |
+
in_shape = X.shape
|
8 |
+
if X.shape != (1, 180):
|
9 |
+
print('File shape is not (1, 180) but ', in_shape)
|
10 |
+
|
11 |
+
X = to_time_series_dataset(X)
|
12 |
+
X = X.reshape(in_shape[0], -1)
|
13 |
+
scaler = TimeSeriesScalerMeanVariance()
|
14 |
+
X = scaler.fit_transform(X)
|
15 |
+
return X.reshape(in_shape)
|
16 |
+
|
17 |
+
def label_decoding(value, path):
|
18 |
+
with open(path, "rb") as f:
|
19 |
+
mapping = pickle.load(f)
|
20 |
+
inverse_mapping = {v: k for k, v in mapping.items()}
|
21 |
+
return inverse_mapping[value]
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
joblib
|
4 |
+
huggingface-hub
|
5 |
+
pandas==2.2.3
|
6 |
+
numpy==1.26.4
|
7 |
+
scikit-learn==1.2.2
|
8 |
+
tslearn
|
9 |
+
pickle
|
10 |
+
tensorflow
|
utils.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from wrappers import LSTMWrapper, XGBWrapper, CNNWrapper
|
2 |
+
import joblib
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
|
5 |
+
|
6 |
+
def load_model_by_type(model_path):
|
7 |
+
if model_path.suffix == '.h5':
|
8 |
+
if 'lstm_multi' in str(model_path):
|
9 |
+
return LSTMWrapper(load_model(model_path))
|
10 |
+
elif 'cnn_multi' in str(model_path):
|
11 |
+
return CNNWrapper(load_model(model_path))
|
12 |
+
else:
|
13 |
+
raise ValueError("Unsupported model type")
|
14 |
+
elif model_path.suffix == '.pkl':
|
15 |
+
return XGBWrapper(joblib.load(model_path))
|
16 |
+
else:
|
17 |
+
raise ValueError("Unsupported model type")
|
18 |
+
|
19 |
+
def encoder_from_model(model_name):
|
20 |
+
if model_name == "cnn_multi_model.h5":
|
21 |
+
return "cnn_multi_label_encoding.pkl"
|
22 |
+
elif model_name == "lstm_multi_model.h5":
|
23 |
+
return "lstm_multi_label_encoding.pkl"
|
24 |
+
elif model_name == "pca_xgboost_multi_model.pkl":
|
25 |
+
return "pca_xgboost_multi_label_encoding.pkl"
|
26 |
+
elif model_name == "cnn_binary_model.h5":
|
27 |
+
return "cnn_binary_label_encoding.pkl"
|
28 |
+
elif model_name == "lstm_binary_model.h5":
|
29 |
+
return "lstm_binary_label_encoding.pkl"
|
30 |
+
elif model_name == "pca_xgboost_binary_model.pkl":
|
31 |
+
return "pca_xgboost_binary_label_encoding.pkl"
|
32 |
+
else:
|
33 |
+
raise ValueError("Unsupported model name")
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
from pathlib import Path
|
38 |
+
PACKAGE_ROOT = Path(__file__).parent.parent.parent
|
39 |
+
MODEL_PATH = PACKAGE_ROOT / "models" / "lstm_multi_model.h5"
|
40 |
+
load_model_by_type(MODEL_PATH)
|
wrappers.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from preproc import preproc_single
|
3 |
+
|
4 |
+
class BaseModelWrapper:
|
5 |
+
def __init__(self, model):
|
6 |
+
self.model = model
|
7 |
+
|
8 |
+
def preprocess(self, data):
|
9 |
+
"""Default preprocessing (can be overridden)."""
|
10 |
+
return preproc_single(data)
|
11 |
+
|
12 |
+
def predict(self, data):
|
13 |
+
"""Call the model's prediction."""
|
14 |
+
raise NotImplementedError("Subclasses must implement predict()")
|
15 |
+
|
16 |
+
def postprocess(self, prediction):
|
17 |
+
"""Default postprocessing (can be overridden)."""
|
18 |
+
return prediction
|
19 |
+
|
20 |
+
def predict_with_pipeline(self, data):
|
21 |
+
"""Unified prediction pipeline."""
|
22 |
+
processed_data = self.preprocess(data)
|
23 |
+
raw_prediction = self.predict(processed_data)
|
24 |
+
final_output = self.postprocess(raw_prediction)
|
25 |
+
return final_output
|
26 |
+
|
27 |
+
|
28 |
+
class LSTMWrapper(BaseModelWrapper):
|
29 |
+
def preprocess(self, data):
|
30 |
+
# LSTM requires additional dimension expansion
|
31 |
+
data = preproc_single(data)
|
32 |
+
return np.expand_dims(data, axis=1) # Add time-step dimension
|
33 |
+
|
34 |
+
def predict(self, data):
|
35 |
+
return self.model.predict(data)
|
36 |
+
|
37 |
+
def postprocess(self, prediction):
|
38 |
+
# Assume the output is a probability vector; apply argmax
|
39 |
+
return np.argmax(prediction, axis=1).tolist()
|
40 |
+
|
41 |
+
|
42 |
+
class XGBWrapper(BaseModelWrapper):
|
43 |
+
def predict(self, data):
|
44 |
+
return self.model.predict(data).tolist()
|
45 |
+
|
46 |
+
class CNNWrapper(BaseModelWrapper):
|
47 |
+
def predict(self, data):
|
48 |
+
return self.model.predict(data)
|
49 |
+
|
50 |
+
def postprocess(self, prediction):
|
51 |
+
return np.argmax(prediction, axis=1).tolist()
|