Spaces:
Runtime error
Runtime error
# %% | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" | |
import gradio as gr | |
from transformers import LlamaTokenizer | |
from transformers import LlamaForCausalLM, GenerationConfig | |
from peft import PeftModel | |
import torch | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
device_map={'': 0} | |
def generate_instruction_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Response:""" | |
def evaluate( | |
model, | |
tokenizer, | |
instruction, | |
input=None, | |
temperature=0.1, | |
top_p=0.75, | |
num_beams=4, | |
max_token=256, | |
): | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
num_beams=num_beams, | |
top_k=40, | |
no_repeat_ngram_size=3, | |
) | |
prompt = generate_instruction_prompt(instruction, input) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_token, | |
) | |
s = generation_output.sequences[0] | |
output = tokenizer.decode(s) | |
res = output.split("### Response:")[1].strip() | |
print("Response:", res) | |
return res | |
def load_lora(lora_path, base_model="decapoda-research/llama-7b-hf"): | |
model = LlamaForCausalLM.from_pretrained( | |
base_model, | |
# load_in_8bit=True, | |
# device_map=device_map, | |
low_cpu_mem_usage=True, | |
) | |
print("Loading LoRA...") | |
lora = PeftModel.from_pretrained( | |
model, | |
lora_path, | |
# device_map=device_map, | |
) | |
return lora | |
base_model = "decapoda-research/llama-7b-hf" | |
tokenizer = LlamaTokenizer.from_pretrained(base_model) | |
# question = "ε¦ζδ»ε€©ζ―ζζδΊ, ι£δΉε倩ζ―ζζε ?" | |
model = load_lora(lora_path="facat/alpaca-lora-cn", base_model=base_model) | |
eval = lambda question, input, temperature, beams, max_token: evaluate( | |
model, | |
tokenizer, | |
question, | |
input=input, | |
temperature=temperature, | |
num_beams=beams, | |
max_token=max_token, | |
) | |
gr.Interface( | |
fn=eval, | |
inputs=[ | |
gr.components.Textbox( | |
lines=2, label="Instruction", placeholder="Tell me about alpacas." | |
), | |
gr.components.Textbox(lines=2, label="Input", placeholder="none"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), | |
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), | |
# gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), | |
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), | |
gr.components.Slider( | |
minimum=1, maximum=512, step=1, value=256, label="Max tokens" | |
), | |
], | |
outputs=[ | |
gr.inputs.Textbox( | |
lines=8, | |
label="Output", | |
) | |
], | |
title=f"Alpaca-LoRA", | |
description=f"Alpaca-LoRA", | |
).launch() | |