move model to cpu when not using ZeroGPU
Browse files
app.py
CHANGED
@@ -70,26 +70,9 @@ examples = [
|
|
70 |
|
71 |
OBJ_ID = 0
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
if "predictor" not in session_state:
|
77 |
-
sam2_checkpoint = "checkpoints/edgetam.pt"
|
78 |
-
model_cfg = "edgetam.yaml"
|
79 |
-
predictor = build_sam2_video_predictor(
|
80 |
-
model_cfg, sam2_checkpoint, device="cuda"
|
81 |
-
)
|
82 |
-
print("predictor loaded")
|
83 |
-
|
84 |
-
# use bfloat16 for the entire demo
|
85 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
86 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
87 |
-
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
88 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
89 |
-
torch.backends.cudnn.allow_tf32 = True
|
90 |
-
|
91 |
-
session_state["predictor"] = predictor
|
92 |
-
return session_state["predictor"]
|
93 |
|
94 |
|
95 |
def get_video_fps(video_path):
|
@@ -106,10 +89,8 @@ def get_video_fps(video_path):
|
|
106 |
return fps
|
107 |
|
108 |
|
109 |
-
@spaces.GPU
|
110 |
def reset(session_state):
|
111 |
-
predictor
|
112 |
-
predictor.to("cuda")
|
113 |
session_state["input_points"] = []
|
114 |
session_state["input_labels"] = []
|
115 |
if session_state["inference_state"] is not None:
|
@@ -127,10 +108,8 @@ def reset(session_state):
|
|
127 |
)
|
128 |
|
129 |
|
130 |
-
@spaces.GPU
|
131 |
def clear_points(session_state):
|
132 |
-
predictor
|
133 |
-
predictor.to("cuda")
|
134 |
session_state["input_points"] = []
|
135 |
session_state["input_labels"] = []
|
136 |
if session_state["inference_state"]["tracking_has_started"]:
|
@@ -143,10 +122,8 @@ def clear_points(session_state):
|
|
143 |
)
|
144 |
|
145 |
|
146 |
-
@spaces.GPU
|
147 |
def preprocess_video_in(video_path, session_state):
|
148 |
-
predictor
|
149 |
-
predictor.to("cuda")
|
150 |
if video_path is None:
|
151 |
return (
|
152 |
gr.update(open=True), # video_in_drawer
|
@@ -210,59 +187,62 @@ def segment_with_points(
|
|
210 |
session_state,
|
211 |
evt: gr.SelectData,
|
212 |
):
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
session_state["
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
|
234 |
-
|
235 |
-
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
|
261 |
-
|
262 |
-
|
263 |
|
264 |
-
|
265 |
-
|
266 |
|
267 |
|
268 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
@@ -285,61 +265,68 @@ def propagate_to_all(
|
|
285 |
video_in,
|
286 |
session_state,
|
287 |
):
|
288 |
-
predictor = get_predictor(session_state)
|
289 |
predictor.to("cuda")
|
290 |
-
if (
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
None
|
297 |
-
session_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
)
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
print("starting propagate_in_video")
|
303 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
304 |
-
session_state["inference_state"]
|
305 |
-
):
|
306 |
-
video_segments[out_frame_idx] = {
|
307 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
308 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
309 |
-
}
|
310 |
-
|
311 |
-
# obtain the segmentation results every few frames
|
312 |
-
vis_frame_stride = 1
|
313 |
-
|
314 |
-
output_frames = []
|
315 |
-
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
316 |
-
transparent_background = Image.fromarray(
|
317 |
-
session_state["all_frames"][out_frame_idx]
|
318 |
-
).convert("RGBA")
|
319 |
-
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
320 |
-
mask_image = show_mask(out_mask)
|
321 |
-
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
322 |
-
output_frame = np.array(output_frame)
|
323 |
-
output_frames.append(output_frame)
|
324 |
-
|
325 |
-
torch.cuda.empty_cache()
|
326 |
-
|
327 |
-
# Create a video clip from the image sequence
|
328 |
-
original_fps = get_video_fps(video_in)
|
329 |
-
fps = original_fps # Frames per second
|
330 |
-
clip = ImageSequenceClip(output_frames, fps=fps)
|
331 |
-
# Write the result to a file
|
332 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
333 |
-
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
334 |
-
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
335 |
-
|
336 |
-
# Write the result to a file
|
337 |
-
clip.write_videofile(final_vid_output_path, codec="libx264")
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
|
344 |
|
345 |
def update_ui():
|
|
|
70 |
|
71 |
OBJ_ID = 0
|
72 |
|
73 |
+
sam2_checkpoint = "checkpoints/edgetam.pt"
|
74 |
+
model_cfg = "edgetam.yaml"
|
75 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
def get_video_fps(video_path):
|
|
|
89 |
return fps
|
90 |
|
91 |
|
|
|
92 |
def reset(session_state):
|
93 |
+
predictor.to("cpu")
|
|
|
94 |
session_state["input_points"] = []
|
95 |
session_state["input_labels"] = []
|
96 |
if session_state["inference_state"] is not None:
|
|
|
108 |
)
|
109 |
|
110 |
|
|
|
111 |
def clear_points(session_state):
|
112 |
+
predictor.to("cpu")
|
|
|
113 |
session_state["input_points"] = []
|
114 |
session_state["input_labels"] = []
|
115 |
if session_state["inference_state"]["tracking_has_started"]:
|
|
|
122 |
)
|
123 |
|
124 |
|
|
|
125 |
def preprocess_video_in(video_path, session_state):
|
126 |
+
predictor.to("cpu")
|
|
|
127 |
if video_path is None:
|
128 |
return (
|
129 |
gr.update(open=True), # video_in_drawer
|
|
|
187 |
session_state,
|
188 |
evt: gr.SelectData,
|
189 |
):
|
190 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
191 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
192 |
+
torch.backends.cudnn.allow_tf32 = True
|
193 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
194 |
+
predictor.to("cuda")
|
195 |
+
session_state["input_points"].append(evt.index)
|
196 |
+
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
197 |
+
|
198 |
+
if point_type == "include":
|
199 |
+
session_state["input_labels"].append(1)
|
200 |
+
elif point_type == "exclude":
|
201 |
+
session_state["input_labels"].append(0)
|
202 |
+
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
203 |
+
|
204 |
+
# Open the image and get its dimensions
|
205 |
+
transparent_background = Image.fromarray(session_state["first_frame"]).convert(
|
206 |
+
"RGBA"
|
207 |
+
)
|
208 |
+
w, h = transparent_background.size
|
209 |
|
210 |
+
# Define the circle radius as a fraction of the smaller dimension
|
211 |
+
fraction = 0.01 # You can adjust this value as needed
|
212 |
+
radius = int(fraction * min(w, h))
|
213 |
|
214 |
+
# Create a transparent layer to draw on
|
215 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
216 |
|
217 |
+
for index, track in enumerate(session_state["input_points"]):
|
218 |
+
if session_state["input_labels"][index] == 1:
|
219 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
220 |
+
else:
|
221 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
222 |
|
223 |
+
# Convert the transparent layer back to an image
|
224 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
225 |
+
selected_point_map = Image.alpha_composite(
|
226 |
+
transparent_background, transparent_layer
|
227 |
+
)
|
228 |
|
229 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
230 |
+
points = np.array(session_state["input_points"], dtype=np.float32)
|
231 |
+
# for labels, `1` means positive click and `0` means negative click
|
232 |
+
labels = np.array(session_state["input_labels"], np.int32)
|
233 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
234 |
+
inference_state=session_state["inference_state"],
|
235 |
+
frame_idx=0,
|
236 |
+
obj_id=OBJ_ID,
|
237 |
+
points=points,
|
238 |
+
labels=labels,
|
239 |
+
)
|
240 |
|
241 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
242 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
243 |
|
244 |
+
torch.cuda.empty_cache()
|
245 |
+
return selected_point_map, first_frame_output, session_state
|
246 |
|
247 |
|
248 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
265 |
video_in,
|
266 |
session_state,
|
267 |
):
|
|
|
268 |
predictor.to("cuda")
|
269 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
270 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
271 |
+
torch.backends.cudnn.allow_tf32 = True
|
272 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
273 |
+
if (
|
274 |
+
len(session_state["input_points"]) == 0
|
275 |
+
or video_in is None
|
276 |
+
or session_state["inference_state"] is None
|
277 |
+
):
|
278 |
+
return (
|
279 |
+
None,
|
280 |
+
session_state,
|
281 |
+
)
|
282 |
+
|
283 |
+
# run propagation throughout the video and collect the results in a dict
|
284 |
+
video_segments = (
|
285 |
+
{}
|
286 |
+
) # video_segments contains the per-frame segmentation results
|
287 |
+
print("starting propagate_in_video")
|
288 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
289 |
+
session_state["inference_state"]
|
290 |
+
):
|
291 |
+
video_segments[out_frame_idx] = {
|
292 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
293 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
294 |
+
}
|
295 |
+
|
296 |
+
# obtain the segmentation results every few frames
|
297 |
+
vis_frame_stride = 1
|
298 |
+
|
299 |
+
output_frames = []
|
300 |
+
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
301 |
+
transparent_background = Image.fromarray(
|
302 |
+
session_state["all_frames"][out_frame_idx]
|
303 |
+
).convert("RGBA")
|
304 |
+
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
305 |
+
mask_image = show_mask(out_mask)
|
306 |
+
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
307 |
+
output_frame = np.array(output_frame)
|
308 |
+
output_frames.append(output_frame)
|
309 |
+
|
310 |
+
torch.cuda.empty_cache()
|
311 |
+
|
312 |
+
# Create a video clip from the image sequence
|
313 |
+
original_fps = get_video_fps(video_in)
|
314 |
+
fps = original_fps # Frames per second
|
315 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
316 |
+
# Write the result to a file
|
317 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
318 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
319 |
+
final_vid_output_path = os.path.join(
|
320 |
+
tempfile.gettempdir(), final_vid_output_path
|
321 |
)
|
322 |
|
323 |
+
# Write the result to a file
|
324 |
+
clip.write_videofile(final_vid_output_path, codec="libx264")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
return (
|
327 |
+
gr.update(value=final_vid_output_path),
|
328 |
+
session_state,
|
329 |
+
)
|
330 |
|
331 |
|
332 |
def update_ui():
|