Spaces:
Build error
Build error
File size: 5,295 Bytes
8ead8df 71a6b0b 8ead8df 71a6b0b 8ead8df 71a6b0b 8ead8df 71a6b0b 8ead8df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import gradio as gr
import numpy as np
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.speech_to_speech.hub_interface import S2SHubInterface
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
form api-inference-community.docker_images.fairseq.app.pipelines.audio_to_audio import SpeechToSpeechPipeline
io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_en-hk", api_key=os.environ['api_key'])
io2 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_hk-en", api_key=os.environ['api_key'])
io3 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_en-hk", api_key=os.environ['api_key'])
io4 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_hk-en", api_key=os.environ['api_key'])
def call_model(audio, model):
pipe = SpeechToSpeechPipeline("facebook/xm_transformer_unity_hk-en")
return pipe(audio)
def inference(audio, model):
if model == "xm_transformer_s2ut_en-hk":
out_audio = io1(audio)
elif model == "xm_transformer_s2ut_hk-en":
out_audio = io2(audio)
elif model == "xm_transformer_unity_en-hk":
out_audio = io3(audio)
elif model == "xm_transformer_unity_hk-en_gpu":
out_audio = call_model(audio, model)
else:
out_audio = io4(audio)
return out_audio
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: black;
border-color: grey;
background: white;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.prompt h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
"""
block = gr.Blocks(css=css)
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Hokkien Translation
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
A demo for fairseq speech-to-speech translation models. It supports S2UT and UnitY models for bidirectional Hokkien and English translation. Please select the model and record the input to submit.
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
audio = gr.Audio(
source="microphone", type="filepath", label="Input"
)
btn = gr.Button("Submit")
model = gr.Dropdown(choices=["xm_transformer_unity_en-hk", "xm_transformer_unity_hk-en", "xm_transformer_unity_hk-en_gpu", "xm_transformer_s2ut_en-hk", "xm_transformer_s2ut_hk-en"], value="xm_transformer_unity_en-hk",type="value", label="Model")
out = gr.Audio(label="Output")
btn.click(inference, inputs=[audio, model], outputs=out)
gr.HTML('''
<div class="footer">
<p>Model by <a href="https://ai.facebook.com/" style="text-decoration: underline;" target="_blank">Meta AI</a>
</p>
</div>
''')
block.launch() |