File size: 2,900 Bytes
8d6526d
 
 
7745544
 
 
 
8d6526d
 
cd3958e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d64757
cd3958e
4d64757
 
 
 
cfc4123
4d64757
 
 
 
 
 
 
 
 
 
 
 
 
e06601a
4d64757
 
 
 
 
 
 
 
 
 
 
 
cd3958e
4d64757
cd3958e
4d64757
cd3958e
4d64757
 
 
 
 
 
8d6526d
4d64757
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import numpy as np

io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_en-hk")
io2 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_hk-en")
io3 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_en-hk")
io4 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_hk-en")
   
def inference(audio, model):
    try:
        if not audio:
            raise ValueError("No audio input provided")
        
        if model == "xm_transformer_s2ut_en-hk":
            out_audio = io1(audio)
        elif model == "xm_transformer_s2ut_hk-en":
            out_audio = io2(audio)
        elif model == "xm_transformer_unity_en-hk":
            out_audio = io3(audio)
        elif model == "xm_transformer_unity_hk-en":
            out_audio = io4(audio)
        else:
            raise ValueError(f"Unsupported model: {model}")
        
        if not out_audio:
            raise ValueError("Model failed to generate output")
            
        return out_audio, "Success"
    except Exception as e:
        print(f"Error during inference: {str(e)}")
        return None, str(e)

block = gr.Blocks()

with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Hokkien Translation
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                A demo for fairseq speech-to-speech translation models. It supports S2UT and UnitY models for bidirectional Hokkien and English translation. Please select the model and record the input to submit.
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                audio = gr.Audio(
                   source="microphone", type="filepath", label="Input"
                )
                
                btn = gr.Button("Submit")
        model = gr.Dropdown(choices=["xm_transformer_s2ut_en-hk", "xm_transformer_s2ut_hk-en"], value="xm_transformer_s2ut_en-hk", type="value", label="Model")
        out = gr.Audio(label="Output")
        status = gr.Textbox(label="Status", interactive=False)
        
        btn.click(inference, inputs=[audio, model], outputs=[out, status], api_name="inference") 
        gr.HTML('''
        <div class="footer">
                    <p>Model by <a href="https://ai.facebook.com/" style="text-decoration: underline;" target="_blank">Meta AI</a>
                    </p>
        </div>
        ''')

block.launch()