Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import typing as tp | |
from torch.optim import Optimizer | |
from torch.optim.lr_scheduler import _LRScheduler | |
class LinearWarmupLRScheduler(_LRScheduler): | |
"""Inverse square root LR scheduler. | |
Args: | |
optimizer (Optimizer): Torch optimizer. | |
warmup_steps (int): Number of warmup steps. | |
warmup_init_lr (tp.Optional[float]): Initial learning rate | |
during warmup phase. When not set, use the provided learning rate. | |
""" | |
def __init__(self, optimizer: Optimizer, warmup_steps: int, warmup_init_lr: tp.Optional[float] = 0): | |
self.warmup_steps = warmup_steps | |
self.warmup_init_lr = warmup_init_lr | |
super().__init__(optimizer) | |
def _get_sched_lr(self, lr: float, step: int): | |
if step < self.warmup_steps: | |
warmup_init_lr = self.warmup_init_lr or 0 | |
lr_step = (lr - warmup_init_lr) / self.warmup_steps | |
lr = warmup_init_lr + step * lr_step | |
return lr | |
def get_lr(self): | |
return [self._get_sched_lr(base_lr, self.last_epoch) for base_lr in self.base_lrs] | |