# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under thmage license found in the # LICENSE file in the root directory of this source tree. import spaces import argparse import logging import os from pathlib import Path import subprocess as sp import sys from tempfile import NamedTemporaryFile import time import typing as tp import warnings import torch import gradio as gr from audiocraft.data.audio_utils import convert_audio from audiocraft.data.audio import audio_read, audio_write from audiocraft.models import MelodyFlow MODEL = None # Last used model SPACE_ID = os.environ.get('SPACE_ID', '') MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/') IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID MAX_BATCH_SIZE = 12 N_REPEATS = 3 INTERRUPTING = False MBD = None # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform _old_call = sp.call EULER = "euler" MIDPOINT = "midpoint" def interrupt(): global INTERRUPTING INTERRUPTING = True class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def make_waveform(*args, **kwargs): # Further remove some warnings. be = time.time() with warnings.catch_warnings(): warnings.simplefilter('ignore') out = gr.make_waveform(*args, **kwargs) print("Make a video took", time.time() - be) return out def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")): global MODEL print("Loading model", version) if MODEL is None or MODEL.name != version: # Clear PyTorch CUDA cache and delete model del MODEL if torch.cuda.is_available(): torch.cuda.empty_cache() MODEL = None # in case loading would crash MODEL = MelodyFlow.get_pretrained(version) def _do_predictions(texts, melodies, solver, steps, target_flowstep, regularize, regularization_strength, duration, progress=False, ): MODEL.set_generation_params(solver=solver, steps=steps, duration=duration,) MODEL.set_editing_params(solver=solver, steps=steps, target_flowstep=target_flowstep, regularize=regularize, lambda_kl=regularization_strength) print("new batch", len(texts), texts, [None if m is None else m for m in melodies]) be = time.time() processed_melodies = [] target_sr = 48000 target_ac = 2 for melody in melodies: if melody is None: processed_melodies.append(None) else: melody, sr = audio_read(melody) if melody.dim() == 2: melody = melody[None] if melody.shape[-1] > int(sr * MODEL.duration): melody = melody[..., :int(sr * MODEL.duration)] melody = convert_audio(melody, sr, target_sr, target_ac) melody = MODEL.encode_audio(melody.to(MODEL.device)) processed_melodies.append(melody) try: if any(m is not None for m in processed_melodies): outputs = MODEL.edit( prompt_tokens=torch.cat(processed_melodies, dim=0).repeat(len(texts), 1, 1), descriptions=texts, src_descriptions=[""] * len(texts), progress=progress, return_tokens=False, ) else: outputs = MODEL.generate(texts, progress=progress, return_tokens=False) except RuntimeError as e: raise gr.Error("Error while generating " + e.args[0]) outputs = outputs.detach().cpu().float() out_wavs = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) out_wavs.append(file.name) file_cleaner.add(file.name) print("batch finished", len(texts), time.time() - be) print("Tempfiles currently stored: ", len(file_cleaner.files)) return out_wavs @spaces.GPU(duration=30) def predict(model, text, solver, steps, target_flowstep, regularize, regularization_strength, duration, melody=None, model_path=None, progress=gr.Progress()): if melody is not None: if solver == MIDPOINT: steps = steps//2 else: steps = steps//5 global INTERRUPTING INTERRUPTING = False progress(0, desc="Loading model...") if model_path: model_path = model_path.strip() if not Path(model_path).exists(): raise gr.Error(f"Model path {model_path} doesn't exist.") if not Path(model_path).is_dir(): raise gr.Error(f"Model path {model_path} must be a folder containing " "state_dict.bin and compression_state_dict_.bin.") model = model_path load_model(model) max_generated = 0 def _progress(generated, to_generate): nonlocal max_generated max_generated = max(generated, max_generated) progress((min(max_generated, to_generate), to_generate)) if INTERRUPTING: raise gr.Error("Interrupted.") MODEL.set_custom_progress_callback(_progress) wavs = _do_predictions( [text] * N_REPEATS, [melody], solver=solver, steps=steps, target_flowstep=target_flowstep, regularize=regularize, regularization_strength=regularization_strength, duration=duration, progress=True,) outputs_ = [wav for wav in wavs] return tuple(outputs_) def toggle_audio_src(choice): if choice == "mic": return gr.update(sources=["microphone", "upload"], value=None, label="Microphone") else: return gr.update(sources=["upload", "microphone"], value=None, label="File") def toggle_melody(melody): if melody is None: return gr.update(value=MIDPOINT) else: return gr.update(value=EULER) def toggle_solver(solver, melody): if melody is None: if solver == MIDPOINT: return gr.update(value=64.0, minimum=2, maximum=128.0, step=2.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0) else: return gr.update(value=64.0, minimum=1, maximum=128.0, step=1.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0) else: if solver == MIDPOINT: return gr.update(value=128, minimum=4.0, maximum=256.0, step=4.0), gr.update(interactive=True, value=0.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=False, value=0.0) else: return gr.update(value=125, minimum=5.0, maximum=250.0, step=5.0), gr.update(interactive=True, value=0.0), gr.update(interactive=True, value=True), gr.update(interactive=True, value=0.2), gr.update(interactive=False, value=0.0) def ui_local(launch_kwargs): with gr.Blocks() as interface: gr.Markdown( """ # MelodyFlow This is your private demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft), A fast text-guided music generation and editing model based on a single-stage flow matching DiT presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"] (https://huggingface.co/papers/2407.03648) """ ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Input Text", interactive=True) melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone", interactive=True, elem_id="melody-input", min_length=1) with gr.Row(): submit = gr.Button("Submit") # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) with gr.Row(): model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")], label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True) model_path = gr.Text(label="Model Path (custom models)") with gr.Row(): solver = gr.Radio([EULER, MIDPOINT], label="ODE Solver", value=MIDPOINT, interactive=True) steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0, step=2.0, value=128.0, interactive=True) duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True) with gr.Row(): target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0, maximum=1.0, value=0.0, interactive=False) regularize = gr.Checkbox(label="Regularize", value=False, interactive=False) regularization_strength = gr.Slider( label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False) with gr.Column(): audio_outputs = [ gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)] submit.click(fn=predict, inputs=[model, text, solver, steps, target_flowstep, regularize, regularization_strength, duration, melody, model_path,], outputs=[o for o in audio_outputs]) melody.change(toggle_melody, melody, [solver]) solver.change(toggle_solver, [solver, melody], [steps, target_flowstep, regularize, regularization_strength, duration]) gr.Examples( fn=predict, examples=[ [ (MODEL_PREFIX + "melodyflow-t24-30secs"), "80s electronic track with melodic synthesizers, catchy beat and groovy bass.", MIDPOINT, 64, 1.0, False, 0.0, 30.0, None, ], [ (MODEL_PREFIX + "melodyflow-t24-30secs"), "A cheerful country song with acoustic guitars accompanied by a nice piano melody.", EULER, 125, 0.0, True, 0.2, -1.0, "./assets/bolero_ravel.mp3", ], ], inputs=[model, text, solver, steps, target_flowstep, regularize, regularization_strength, duration, melody,], outputs=[audio_outputs], cache_examples=False, ) gr.Markdown( """ ### More details The model will generate a short music extract based on the description you provided. The model can generate or edit up to 30 seconds of audio in one pass. The model was trained with description from a stock music catalog, descriptions that will work best should include some level of details on the instruments present, along with some intended use case (e.g. adding "perfect for a commercial" can somehow help). You can optionally provide a reference audio from which the model will elaborate an edited version based on the text description, using MelodyFlow's regularized latent inversion. **WARNING:** Choosing long durations will take a longer time to generate. Available models are: 1. facebook/melodyflow-t24-30secs (1B) See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md) for more details. """ ) interface.queue().launch(**launch_kwargs) def ui_hf(launch_kwargs): with gr.Blocks() as interface: gr.Markdown( """ # MelodyFlow This is the demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md), a fast text-guided music generation and editing model based on a single-stage flow matching DiT presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"](https://huggingface.co/papers/2407.03648). Use of this demo is subject to [Meta's AI Terms of Service](https://www.facebook.com/legal/ai-terms).
Duplicate Space for longer sequences, more control and no queue.

""" ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Input Text", interactive=True) melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone", interactive=True, elem_id="melody-input", min_length=1) with gr.Row(): submit = gr.Button("Submit") # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) with gr.Row(): model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")], label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True) with gr.Row(): solver = gr.Radio([EULER, MIDPOINT], label="ODE Solver", value=MIDPOINT, interactive=True) steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0, step=2.0, value=128.0, interactive=True) duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True) with gr.Row(): target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0, maximum=1.0, value=0.0, interactive=False) regularize = gr.Checkbox(label="Regularize", value=False, interactive=False) regularization_strength = gr.Slider( label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False) with gr.Column(): audio_outputs = [ gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)] submit.click(fn=predict, inputs=[model, text, solver, steps, target_flowstep, regularize, regularization_strength, duration, melody,], outputs=[o for o in audio_outputs]) melody.change(toggle_melody, melody, [solver]) solver.change(toggle_solver, [solver, melody], [steps, target_flowstep, regularize, regularization_strength, duration]) gr.Examples( fn=predict, examples=[ [ (MODEL_PREFIX + "melodyflow-t24-30secs"), "80s electronic track with melodic synthesizers, catchy beat and groovy bass.", MIDPOINT, 64, 1.0, False, 0.0, 30.0, None, ], [ (MODEL_PREFIX + "melodyflow-t24-30secs"), "A cheerful country song with acoustic guitars accompanied by a nice piano melody.", EULER, 125, 0.0, True, 0.2, -1.0, "./assets/bolero_ravel.mp3", ], ], inputs=[model, text, solver, steps, target_flowstep, regularize, regularization_strength, duration, melody,], outputs=[audio_outputs], cache_examples=False, ) gr.Markdown(""" ### More details The model will generate or edit up to 30 seconds of audio based on the description you provided. The model was trained with description from a stock music catalog, descriptions that will work best should include some level of details on the instruments present, along with some intended use case (e.g. adding "perfect for a commercial" can somehow help). You can optionally provide a reference audio from which the model will elaborate an edited version based on the text description, using MelodyFlow's regularized latent inversion. You can access more control (longer generation, more models etc.) by clicking the Duplicate Space (you will then need a paid GPU from HuggingFace). This gradio demo can also be run locally (best with GPU). See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md) for more details. """) interface.queue().launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--listen', type=str, default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', help='IP to listen on for connections to Gradio', ) parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) parser.add_argument( '--share', action='store_true', help='Share the gradio UI' ) args = parser.parse_args() launch_kwargs = {} launch_kwargs['server_name'] = args.listen if args.username and args.password: launch_kwargs['auth'] = (args.username, args.password) if args.server_port: launch_kwargs['server_port'] = args.server_port if args.inbrowser: launch_kwargs['inbrowser'] = args.inbrowser if args.share: launch_kwargs['share'] = args.share logging.basicConfig(level=logging.INFO, stream=sys.stderr) # Show the interface if IS_HF_SPACE: ui_hf(launch_kwargs) else: ui_local(launch_kwargs)