# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from concurrent.futures import ProcessPoolExecutor from contextlib import contextmanager from functools import wraps, lru_cache import hashlib import json import logging from pathlib import Path import typing as tp import flashy import flashy.distrib import omegaconf import torch from torch.nn.utils.rnn import pad_sequence logger = logging.getLogger(__name__) def model_hash(model: torch.nn.Module) -> str: """Return a model hash. This should allow us to track regressions in model init from the logs of past experiments. """ hasher = hashlib.sha1() for p in model.parameters(): hasher.update(p.data.cpu().numpy().tobytes()) return hasher.hexdigest() def dict_from_config(cfg: omegaconf.DictConfig) -> dict: """Convenience function to map an omegaconf configuration to a dictionary. Args: cfg (omegaconf.DictConfig): Original configuration to map to dict. Returns: dict: Config as dictionary object. """ dct = omegaconf.OmegaConf.to_container(cfg, resolve=True) assert isinstance(dct, dict) return dct def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset: if max_samples >= len(dataset): return dataset generator = torch.Generator().manual_seed(seed) perm = torch.randperm(len(dataset), generator=generator) return torch.utils.data.Subset(dataset, perm[:max_samples].tolist()) def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int, num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader: """Convenience function to load dataset into a dataloader with optional subset sampling. Args: dataset: Dataset to load. num_samples (Optional[int]): Number of samples to limit subset size. batch_size (int): Batch size. num_workers (int): Number of workers for data loading. seed (int): Random seed. """ if num_samples is not None: dataset = random_subset(dataset, num_samples, seed) dataloader = flashy.distrib.loader( dataset, batch_size=batch_size, num_workers=num_workers, **kwargs ) return dataloader def get_dataset_from_loader(dataloader): dataset = dataloader.dataset if isinstance(dataset, torch.utils.data.Subset): return dataset.dataset else: return dataset def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): """torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. Args: input (torch.Tensor): The input tensor containing probabilities. num_samples (int): Number of samples to draw. replacement (bool): Whether to draw with replacement or not. Keywords args: generator (torch.Generator): A pseudorandom number generator for sampling. Returns: torch.Tensor: Last dimension contains num_samples indices sampled from the multinomial probability distribution located in the last dimension of tensor input. """ input_ = input.reshape(-1, input.shape[-1]) output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) output = output_.reshape(*list(input.shape[:-1]), -1) return output def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: """Sample next token from top K values along the last dimension of the input probs tensor. Args: probs (torch.Tensor): Input probabilities with token candidates on the last dimension. k (int): The k in “top-k”. Returns: torch.Tensor: Sampled tokens. """ top_k_value, _ = torch.topk(probs, k, dim=-1) min_value_top_k = top_k_value[..., [-1]] probs *= (probs >= min_value_top_k).float() probs.div_(probs.sum(dim=-1, keepdim=True)) next_token = multinomial(probs, num_samples=1) return next_token def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: """Sample next token from top P probabilities along the last dimension of the input probs tensor. Args: probs (torch.Tensor): Input probabilities with token candidates on the last dimension. p (int): The p in “top-p”. Returns: torch.Tensor: Sampled tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort *= (~mask).float() probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token class DummyPoolExecutor: """Dummy pool executor to use when we actually have only 1 worker. (e.g. instead of ProcessPoolExecutor). """ class DummyResult: def __init__(self, func, *args, **kwargs): self.func = func self.args = args self.kwargs = kwargs def result(self): return self.func(*self.args, **self.kwargs) def __init__(self, workers, mp_context=None): pass def submit(self, func, *args, **kwargs): return DummyPoolExecutor.DummyResult(func, *args, **kwargs) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): return def get_pool_executor(num_workers: int, mp_context=None): return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1) def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor: """Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences). For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]] Args: lengths (torch.Tensor): tensor with lengths max_len (int): can set the max length manually. Defaults to None. Returns: torch.Tensor: mask with 0s where there is pad tokens else 1s """ assert len(lengths.shape) == 1, "Length shape should be 1 dimensional." final_length = lengths.max().item() if not max_len else max_len final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor return torch.arange(final_length, device=lengths.device)[None, :] < lengths[:, None] def hash_trick(word: str, vocab_size: int) -> int: """Hash trick to pair each word with an index Args: word (str): word we wish to convert to an index vocab_size (int): size of the vocabulary Returns: int: index of the word in the embedding LUT """ hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16) return hash % vocab_size def with_rank_rng(base_seed: int = 1234): """Decorator for a function so that the function will use a Random Number Generator whose state depend on the GPU rank. The original RNG state is restored upon returning. Args: base_seed (int): Random seed. """ def _decorator(fun: tp.Callable): @wraps(fun) def _decorated(*args, **kwargs): state = torch.get_rng_state() seed = base_seed ^ flashy.distrib.rank() torch.manual_seed(seed) logger.debug('Rank dependent seed set to %d', seed) try: return fun(*args, **kwargs) finally: torch.set_rng_state(state) logger.debug('RNG state restored.') return _decorated return _decorator def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]: """Get a list of tensors and collate them to a single tensor. according to the following logic: - `dim` specifies the time dimension which will be stacked and padded. - The output will contain 1 new dimension (dimension index 0) which will be the size of of the original list. Args: tensors (tp.List[torch.Tensor]): List of tensors to collate. dim (int): Dimension which will be stacked and padded. Returns: tp.Tuple[torch.Tensor, torch.Tensor]: torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension (dimension index 0) which will be the size of the original list. torch.Tensor: Tensor containing length of original tensor sizes (without padding). """ tensors = [x.transpose(0, dim) for x in tensors] lens = torch.LongTensor([len(x) for x in tensors]) padded_tensors = pad_sequence(tensors) padded_tensors = padded_tensors.transpose(0, 1) padded_tensors = padded_tensors.transpose(1, dim + 1) return padded_tensors, lens # TODO: Move to flashy? def copy_state(state: tp.Any, device: tp.Union[torch.device, str] = 'cpu', dtype: tp.Optional[torch.dtype] = None) -> tp.Any: if isinstance(state, torch.Tensor): if dtype is None or not state.is_floating_point(): dtype = state.dtype return state.detach().to(device=device, dtype=dtype, copy=True) elif isinstance(state, dict): return {k: copy_state(v, device, dtype) for k, v in state.items()} elif isinstance(state, list): return [copy_state(v, device, dtype) for v in state] # TODO: Move to flashy? @contextmanager def swap_state(model, state, **kwargs): old_state = copy_state(model.state_dict()) model.load_state_dict(state, **kwargs) try: yield finally: model.load_state_dict(old_state) @lru_cache(None) def warn_once(logger, msg): """Warn about a given message only once.""" logger.warning(msg) def is_jsonable(x: tp.Any): """Check if an object can be serialized into a json:""" try: json.dumps(x) return True except (TypeError, OverflowError): return False def load_clap_state_dict(clap_model, path: tp.Union[str, Path]): """Wrapper around state dict loading of CLAP model addressing compatibility issues between CLAP and AudioCraft HuggingFace transformer version. See: https://github.com/LAION-AI/CLAP/issues/118 """ from clap_module.factory import load_state_dict # type: ignore pkg = load_state_dict(path) pkg.pop('text_branch.embeddings.position_ids', None) clap_model.model.load_state_dict(pkg) def vae_sample(mean, scale): stdev = torch.nn.functional.softplus(scale) + 1e-4 return torch.randn_like(mean) * stdev + mean