adefossez's picture
updated demo
a16e65e
raw
history blame
14.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import typing as tp
from einops import rearrange, repeat
import flashy
import torch
from torch import nn, einsum
import torch.nn.functional as F
def exists(val: tp.Optional[tp.Any]) -> bool:
return val is not None
def default(val: tp.Any, d: tp.Any) -> tp.Any:
return val if exists(val) else d
def l2norm(t):
return F.normalize(t, p=2, dim=-1)
def ema_inplace(moving_avg, new, decay: float):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
return (x + epsilon) / (x.sum() + n_categories * epsilon)
def uniform_init(*shape: int):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def sample_vectors(samples, num: int):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters: int, num_iters: int = 10):
dim, dtype = samples.shape[-1], samples.dtype
means = sample_vectors(samples, num_clusters)
for _ in range(num_iters):
diffs = rearrange(samples, "n d -> n () d") - rearrange(
means, "c d -> () c d"
)
dists = -(diffs ** 2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
def orthogonal_loss_fn(t):
# eq (2) from https://arxiv.org/abs/2112.00384
n = t.shape[0]
normed_codes = l2norm(t)
identity = torch.eye(n, device=t.device)
cosine_sim = einsum("i d, j d -> i j", normed_codes, normed_codes)
return ((cosine_sim - identity) ** 2).sum() / (n ** 2)
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
If set to true, run the k-means algorithm on the first training batch and use
the learned centroids as initialization.
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
kmeans_init: int = False,
kmeans_iters: int = 10,
decay: float = 0.8,
epsilon: float = 1e-5,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.decay = decay
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(codebook_size, dim)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.epsilon = epsilon
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
@torch.jit.ignore
def init_embed_(self, data):
if self.inited:
return
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.inited.data.copy_(torch.Tensor([True]))
# Make sure all buffers across workers are in sync after initialization
flashy.distrib.broadcast_tensors(self.buffers())
def replace_(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace_(batch_samples, mask=expired_codes)
flashy.distrib.broadcast_tensors(self.buffers())
def preprocess(self, x):
x = rearrange(x, "... d -> (...) d")
return x
def quantize(self, x):
embed = self.embed.t()
dist = -(
x.pow(2).sum(1, keepdim=True)
- 2 * x @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
return embed_ind
def postprocess_emb(self, embed_ind, shape):
return embed_ind.view(*shape[:-1])
def dequantize(self, embed_ind):
quantize = F.embedding(embed_ind, self.embed)
return quantize
def encode(self, x):
shape = x.shape
# pre-process
x = self.preprocess(x)
# quantize
embed_ind = self.quantize(x)
# post-process
embed_ind = self.postprocess_emb(embed_ind, shape)
return embed_ind
def decode(self, embed_ind):
quantize = self.dequantize(embed_ind)
return quantize
def forward(self, x):
shape, dtype = x.shape, x.dtype
x = self.preprocess(x)
self.init_embed_(x)
embed_ind = self.quantize(x)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = self.postprocess_emb(embed_ind, shape)
quantize = self.dequantize(embed_ind)
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
self.expire_codes_(x)
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = x.t() @ embed_onehot
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
return quantize, embed_ind
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int):
channels_last (bool): Channels are the last dimension in the input tensors.
commitment_weight (float): Weight for commitment loss.
orthogonal_reg_weight (float): Orthogonal regularization weights.
orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes.
orthogonal_reg_max_codes (optional int): Maximum number of codes to consider
for orthogonal regularization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim: tp.Optional[int] = None,
decay: float = 0.8,
epsilon: float = 1e-5,
kmeans_init: bool = False,
kmeans_iters: int = 10,
threshold_ema_dead_code: int = 2,
channels_last: bool = False,
commitment_weight: float = 1.,
orthogonal_reg_weight: float = 0.0,
orthogonal_reg_active_codes_only: bool = False,
orthogonal_reg_max_codes: tp.Optional[int] = None,
):
super().__init__()
_codebook_dim: int = default(codebook_dim, dim)
requires_projection = _codebook_dim != dim
self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity())
self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity())
self.epsilon = epsilon
self.commitment_weight = commitment_weight
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size,
kmeans_init=kmeans_init, kmeans_iters=kmeans_iters,
decay=decay, epsilon=epsilon,
threshold_ema_dead_code=threshold_ema_dead_code)
self.codebook_size = codebook_size
self.channels_last = channels_last
@property
def codebook(self):
return self._codebook.embed
@property
def inited(self):
return self._codebook.inited
def _preprocess(self, x):
if not self.channels_last:
x = rearrange(x, "b d n -> b n d")
return x
def _postprocess(self, quantize):
if not self.channels_last:
quantize = rearrange(quantize, "b n d -> b d n")
return quantize
def encode(self, x):
x = self._preprocess(x)
x = self.project_in(x)
embed_in = self._codebook.encode(x)
return embed_in
def decode(self, embed_ind):
quantize = self._codebook.decode(embed_ind)
quantize = self.project_out(quantize)
quantize = self._postprocess(quantize)
return quantize
def forward(self, x):
device = x.device
x = self._preprocess(x)
x = self.project_in(x)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x)
loss = loss + commit_loss * self.commitment_weight
if self.orthogonal_reg_weight > 0:
codebook = self.codebook
if self.orthogonal_reg_active_codes_only:
# only calculate orthogonal loss for the activated codes for this batch
unique_code_ids = torch.unique(embed_ind)
codebook = codebook[unique_code_ids]
num_codes = codebook.shape[0]
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
rand_ids = torch.randperm(num_codes, device=device)[:self.orthogonal_reg_max_codes]
codebook = codebook[rand_ids]
orthogonal_reg_loss = orthogonal_loss_fn(codebook)
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
quantize = self.project_out(quantize)
quantize = self._postprocess(quantize)
return quantize, embed_ind, loss
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def forward(self, x, n_q: tp.Optional[int] = None):
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
n_q = n_q or len(self.layers)
for i, layer in enumerate(self.layers[:n_q]):
quantized, indices, loss = layer(residual)
residual = residual - quantized
quantized_out = quantized_out + quantized
all_indices.append(indices)
all_losses.append(loss)
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
return quantized_out, out_indices, out_losses
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor:
residual = x
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, q_indices: torch.Tensor) -> torch.Tensor:
quantized_out = torch.tensor(0.0, device=q_indices.device)
for i, indices in enumerate(q_indices):
layer = self.layers[i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out