File size: 7,933 Bytes
94ada0b
 
 
 
 
 
 
 
 
 
 
 
df44b7d
94ada0b
 
 
 
 
 
df44b7d
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c753d
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c753d
94ada0b
 
77c753d
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c753d
94ada0b
 
 
 
 
 
 
 
 
 
 
77c753d
94ada0b
 
 
 
 
 
 
77c753d
94ada0b
 
 
 
 
77c753d
94ada0b
 
 
 
77c753d
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
77c753d
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df44b7d
94ada0b
 
 
 
df44b7d
94ada0b
 
 
77c753d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os, sys
os.system('pip install -r requirements.txt')

import gradio as gr
import numpy as np
import dnnlib
import time
import legacy
import torch
import glob
import cv2

from torch_utils import misc
from renderer import Renderer
from training.networks import Generator
from huggingface_hub import hf_hub_download


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
port   = int(sys.argv[1]) if len(sys.argv) > 1 else 21111


def set_random_seed(seed):
    torch.manual_seed(seed)
    np.random.seed(seed)


def get_camera_traj(model, pitch, yaw, fov=12, batch_size=1, model_name='FFHQ512'):
    gen = model.synthesis
    range_u, range_v = gen.C.range_u, gen.C.range_v
    if not (('car' in model_name) or ('Car' in model_name)):  # TODO: hack, better option?
        yaw, pitch = 0.5 * yaw, 0.3  * pitch
        pitch = pitch + np.pi/2
        u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
        v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
    else:
        u = (yaw + 1) / 2
        v = (pitch + 1) / 2
    cam = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=device, fov=fov)
    return cam


def check_name(model_name='FFHQ512'):
    """Gets model by name."""
    if model_name == 'FFHQ512':
        network_pkl = hf_hub_download(repo_id='thomagram/stylenerf-ffhq-config-basic', filename='ffhq_512.pkl')

    # TODO: checkpoint to be updated!
    # elif model_name == 'FFHQ512v2':
    #     network_pkl = "./pretrained/ffhq_512_eg3d.pkl"
    # elif model_name == 'AFHQ512':
    #     network_pkl = "./pretrained/afhq_512.pkl"
    # elif model_name == 'MetFaces512':
    #     network_pkl = "./pretrained/metfaces_512.pkl"
    # elif model_name == 'CompCars256':
    #     network_pkl = "./pretrained/cars_256.pkl"
    # elif model_name == 'FFHQ1024':
    #     network_pkl = "./pretrained/ffhq_1024.pkl"
    else:
        if os.path.isdir(model_name):
            network_pkl = sorted(glob.glob(model_name + '/*.pkl'))[-1]
        else:
            network_pkl = model_name
    return network_pkl


def get_model(network_pkl, render_option=None):
    print('Loading networks from "%s"...' % network_pkl)
    with dnnlib.util.open_url(network_pkl) as f:
        network = legacy.load_network_pkl(f)
        G = network['G_ema'].to(device)  # type: ignore

    with torch.no_grad():
        G2 = Generator(*G.init_args, **G.init_kwargs).to(device)
        misc.copy_params_and_buffers(G, G2, require_all=False)

    print('compile and go through the initial image')
    G2 = G2.eval()
    init_z = torch.from_numpy(np.random.RandomState(0).rand(1, G2.z_dim)).to(device)
    init_cam = get_camera_traj(G2, 0, 0, model_name=network_pkl)
    dummy = G2(z=init_z, c=None, camera_matrices=init_cam, render_option=render_option, theta=0)
    res = dummy['img'].shape[-1]
    imgs = np.zeros((res, res//2, 3))
    return G2, res, imgs


global_states = list(get_model(check_name()))
wss  = [None, None]

def proc_seed(history, seed):
    if isinstance(seed, str):
        seed = 0
    else:
        seed = int(seed)


def f_synthesis(model_name, model_find, render_option, early, trunc, seed1, seed2, mix1, mix2, yaw, pitch, roll, fov, history):
    history = history or {}
    seeds = []

    if model_find != "":
        model_name = model_find

    model_name = check_name(model_name)
    if model_name != history.get("model_name", None):
        model, res, imgs = get_model(model_name, render_option)
        global_states[0] = model
        global_states[1] = res
        global_states[2] = imgs

    model, res, imgs = global_states
    for idx, seed in enumerate([seed1, seed2]):
        if isinstance(seed, str):
            seed = 0
        else:
            seed = int(seed)

        if (seed != history.get(f'seed{idx}', -1)) or \
            (model_name != history.get("model_name", None)) or \
            (trunc != history.get("trunc", 0.7)) or \
            (wss[idx] is None):
            print(f'use seed {seed}')
            set_random_seed(seed)
            z   = torch.from_numpy(np.random.RandomState(int(seed)).randn(1, model.z_dim).astype('float32')).to(device)
            ws  = model.mapping(z=z, c=None, truncation_psi=trunc)
            img = model.get_final_output(styles=ws, camera_matrices=get_camera_traj(model, 0, 0), render_option=render_option)
            ws  = ws.detach().cpu().numpy()
            img = img[0].permute(1,2,0).detach().cpu().numpy()


            imgs[idx * res // 2: (1 + idx) * res // 2] = cv2.resize(
                np.asarray(img).clip(-1, 1) * 0.5 + 0.5,
                (res//2, res//2), cv2.INTER_AREA)
            wss[idx] = ws
        else:
            seed = history[f'seed{idx}']
        seeds += [seed]

        history[f'seed{idx}'] = seed
    history['trunc'] = trunc
    history['model_name'] = model_name

    set_random_seed(sum(seeds))

    # style mixing (?)
    ws1, ws2 = [torch.from_numpy(ws).to(device) for ws in wss]
    ws = ws1.clone()
    ws[:, :8] = ws1[:, :8] * mix1 + ws2[:, :8] * (1 - mix1)
    ws[:, 8:] = ws1[:, 8:] * mix2 + ws2[:, 8:] * (1 - mix2)

    # set visualization for other types of inputs.
    if early == 'Normal Map':
        render_option += ',normal,early'
    elif early == 'Gradient Map':
        render_option += ',gradient,early'

    start_t = time.time()
    with torch.no_grad():
        cam = get_camera_traj(model, pitch, yaw, fov, model_name=model_name)
        image = model.get_final_output(
            styles=ws, camera_matrices=cam,
            theta=roll * np.pi,
            render_option=render_option)
    end_t = time.time()

    image = image[0].permute(1,2,0).detach().cpu().numpy().clip(-1, 1) * 0.5 + 0.5

    if imgs.shape[0] == image.shape[0]:
        image = np.concatenate([imgs, image], 1)
    else:
        a = image.shape[0]
        b = int(imgs.shape[1] / imgs.shape[0] * a)
        print(f'resize {a} {b} {image.shape} {imgs.shape}')
        image = np.concatenate([cv2.resize(imgs, (b, a), cv2.INTER_AREA), image], 1)

    print(f'rendering time = {end_t-start_t:.4f}s')
    image = (image * 255).astype('uint8')
    return image, history

model_name = gr.inputs.Dropdown(['FFHQ512'])  #  'FFHQ512v2', 'AFHQ512', 'MetFaces512', 'CompCars256', 'FFHQ1024'
model_find = gr.inputs.Textbox(label="checkpoint path", default="")
render_option = gr.inputs.Textbox(label="rendering options", default='steps:40')
trunc  = gr.inputs.Slider(default=0.7, maximum=1.0, minimum=0.0, label='truncation trick')
seed1  = gr.inputs.Number(default=1, label="seed1")
seed2  = gr.inputs.Number(default=9, label="seed2")
mix1   = gr.inputs.Slider(minimum=0, maximum=1, default=0, label="linear mixing ratio (geometry)")
mix2   = gr.inputs.Slider(minimum=0, maximum=1, default=0, label="linear mixing ratio (apparence)")
early  = gr.inputs.Radio(['None', 'Normal Map', 'Gradient Map'], default='None', label='intermedia output')
yaw    = gr.inputs.Slider(minimum=-1, maximum=1, default=0, label="yaw")
pitch  = gr.inputs.Slider(minimum=-1, maximum=1, default=0, label="pitch")
roll   = gr.inputs.Slider(minimum=-1, maximum=1, default=0, label="roll (optional, not suggested)")
fov    = gr.inputs.Slider(minimum=9, maximum=15, default=12, label="fov")
css = ".output-image, .input-image, .image-preview {height: 600px !important} "

gr.Interface(fn=f_synthesis,
             inputs=[model_name, model_find, render_option, early, trunc, seed1, seed2, mix1, mix2, yaw, pitch, roll, fov, "state"],
             title="Interctive Web Demo for StyleNeRF (ICLR 2022)",
             description="Demo for ICLR 2022 Papaer: A Style-based 3D-Aware Generator for High-resolution Image Synthesis. Currently the demo runs on CPU only."
             outputs=["image", "state"],
             layout='unaligned',
             css=css, theme='dark-huggingface',
             live=True).launch(enable_queue=True)