File size: 115,251 Bytes
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

from bdb import set_trace
import copy
from email import generator
import imp
import math
from platform import architecture


import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.autograd import grad
from training.networks import *
from dnnlib.camera import *
from dnnlib.geometry import (
    positional_encoding, upsample, downsample
)
from dnnlib.util import dividable, hash_func, EasyDict
from torch_utils.ops.hash_sample import hash_sample
from torch_utils.ops.grid_sample_gradfix import grid_sample
from torch_utils.ops.nerf_utils import topp_masking
from einops import repeat, rearrange


# --------------------------------- basic modules ------------------------------------------- #
@persistence.persistent_class
class Style2Layer(nn.Module):
    def __init__(self, 
        in_channels, 
        out_channels, 
        w_dim, 
        activation='lrelu', 
        resample_filter=[1,3,3,1],
        magnitude_ema_beta = -1,           # -1 means not using magnitude ema
        **unused_kwargs):

        # simplified version of SynthesisLayer 
        # no noise, kernel size forced to be 1x1, used in NeRF block
        super().__init__()
        self.activation = activation
        self.conv_clamp = None
        self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
        self.padding = 0
        self.act_gain = bias_act.activation_funcs[activation].def_gain
        self.w_dim = w_dim
        self.in_features = in_channels
        self.out_features = out_channels
        memory_format = torch.contiguous_format

        if w_dim > 0:
            self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
            self.weight = torch.nn.Parameter(
               torch.randn([out_channels, in_channels, 1, 1]).to(memory_format=memory_format))
            self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
        
        else:
            self.weight = torch.nn.Parameter(torch.Tensor(out_channels, in_channels))
            self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
            self.weight_gain = 1.

            # initialization
            torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
            fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            torch.nn.init.uniform_(self.bias, -bound, bound)

        self.magnitude_ema_beta = magnitude_ema_beta
        if magnitude_ema_beta > 0:
            self.register_buffer('w_avg', torch.ones([]))

    def extra_repr(self) -> str:
        return 'in_features={}, out_features={}, style={}'.format(
            self.in_features, self.out_features, self.w_dim
        )

    def forward(self, x, w=None, fused_modconv=None, gain=1, up=1, **unused_kwargs):
        flip_weight = True # (up == 1) # slightly faster HACK
        act = self.activation

        if (self.magnitude_ema_beta > 0):
            if self.training:  # updating EMA.
                with torch.autograd.profiler.record_function('update_magnitude_ema'):
                    magnitude_cur = x.detach().to(torch.float32).square().mean()
                    self.w_avg.copy_(magnitude_cur.lerp(self.w_avg, self.magnitude_ema_beta))
            input_gain = self.w_avg.rsqrt()
            x = x * input_gain

        if fused_modconv is None:
            with misc.suppress_tracer_warnings(): # this value will be treated as a constant
                fused_modconv = not self.training
        
        if self.w_dim > 0:           # modulated convolution
            assert x.ndim == 4,  "currently not support modulated MLP"
            styles = self.affine(w)      # Batch x style_dim
            if x.size(0) > styles.size(0):
                styles = repeat(styles, 'b c -> (b s) c', s=x.size(0) // styles.size(0))
            
            x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=None, up=up,
                padding=self.padding, resample_filter=self.resample_filter, 
                flip_weight=flip_weight, fused_modconv=fused_modconv)
            act_gain = self.act_gain * gain
            act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
            x = bias_act.bias_act(x, self.bias.to(x.dtype), act=act, gain=act_gain, clamp=act_clamp)
        
        else:
            if x.ndim == 2:  # MLP mode
                x = F.relu(F.linear(x, self.weight, self.bias.to(x.dtype)))
            else:
                x = F.relu(F.conv2d(x, self.weight[:,:,None, None], self.bias))
                # x = bias_act.bias_act(x, self.bias.to(x.dtype), act='relu')
        return x


@persistence.persistent_class
class SDFDensityLaplace(nn.Module):  # alpha * Laplace(loc=0, scale=beta).cdf(-sdf)
    def __init__(self, params_init={}, noise_std=0.0, beta_min=0.001, exp_beta=False):
        super().__init__()
        self.noise_std = noise_std
        for p in params_init:
            param = nn.Parameter(torch.tensor(params_init[p]))
            setattr(self, p, param)
        self.beta_min = beta_min
        self.exp_beta = exp_beta
        if (exp_beta == 'upper') or exp_beta:
            self.register_buffer("steps", torch.scalar_tensor(0).float())

    def density_func(self, sdf, beta=None):
        if beta is None:
            beta = self.get_beta()
        alpha = 1 / beta
        return alpha * (0.5 + 0.5 * sdf.sign() * torch.expm1(-sdf.abs() / beta))  # TODO: need abs maybe, not sure

    def get_beta(self):
        if self.exp_beta == 'upper':
            beta_upper = 0.12 * torch.exp(-0.003 * (self.steps / 1e3))
            beta = min(self.beta.abs(), beta_upper) + self.beta_min
        elif self.exp_beta:
            if self.steps < 500000:
                beta = self.beta.abs() + self.beta_min
            else:
                beta = self.beta.abs().detach() + self.beta_min
        else:
            beta = self.beta.abs() + self.beta_min
        return beta

    def set_steps(self, steps):
        if hasattr(self, "steps"):
            self.steps = self.steps * 0 + steps

# ------------------------------------------------------------------------------------------- #

@persistence.persistent_class
class NeRFBlock(nn.Module):
    ''' 
    Predicts volume density and color from 3D location, viewing
    direction, and latent code z.
    '''
    # dimensions
    input_dim            = 3
    w_dim                = 512   # style latent
    z_dim                = 0     # input latent
    rgb_out_dim          = 128
    hidden_size          = 128
    n_blocks             = 8
    img_channels         = 3
    magnitude_ema_beta   = -1
    disable_latents      = False
    max_batch_size       = 2 ** 18
    shuffle_factor       = 1
    implementation       = 'batch_reshape'  # option: [flatten_2d, batch_reshape]

    # architecture settings
    activation           = 'lrelu'
    use_skip             = False 
    use_viewdirs         = False
    add_rgb              = False
    predict_rgb          = False
    inverse_sphere       = False
    merge_sigma_feat     = False   # use one MLP for sigma and features
    no_sigma             = False   # do not predict sigma, only output features
    
    tcnn_backend         = False
    use_style            = None 
    use_normal           = False
    use_sdf              = None
    volsdf_exp_beta      = False
    normalized_feat      = False
    final_sigmoid_act    = False

    # positional encoding inpuut
    use_pos              = False
    n_freq_posenc        = 10
    n_freq_posenc_views  = 4
    downscale_p_by       = 1
    gauss_dim_pos        = 20 
    gauss_dim_view       = 4 
    gauss_std            = 10.
    positional_encoding  = "normal"

    def __init__(self, nerf_kwargs):
        super().__init__()
        for key in nerf_kwargs:
            if hasattr(self, key):
                setattr(self, key, nerf_kwargs[key])

        self.sdf_mode = self.use_sdf
        self.use_sdf  = self.use_sdf is not None
        if self.use_sdf == 'volsdf':
            self.density_transform = SDFDensityLaplace(
                params_init={'beta': 0.1}, 
                beta_min=0.0001, 
                exp_beta=self.volsdf_exp_beta)

        # ----------- input module -------------------------
        D = self.input_dim if not self.inverse_sphere else self.input_dim + 1
        if self.positional_encoding == 'gauss':
            rng = np.random.RandomState(2021)
            B_pos  = self.gauss_std * torch.from_numpy(rng.randn(D, self.gauss_dim_pos * D)).float()
            B_view = self.gauss_std * torch.from_numpy(rng.randn(3, self.gauss_dim_view * 3)).float()
            self.register_buffer("B_pos", B_pos)
            self.register_buffer("B_view", B_view)
            dim_embed = D * self.gauss_dim_pos * 2
            dim_embed_view = 3 * self.gauss_dim_view * 2
        elif self.positional_encoding == 'normal':
            dim_embed = D * self.n_freq_posenc * 2
            dim_embed_view = 3 * self.n_freq_posenc_views * 2
        else:  # not using positional encoding
            dim_embed, dim_embed_view = D, 3

        if self.use_pos:
            dim_embed, dim_embed_view = dim_embed + D, dim_embed_view + 3

        self.dim_embed = dim_embed
        self.dim_embed_view = dim_embed_view

        # ------------ Layers --------------------------
        assert not (self.add_rgb and self.predict_rgb), "only one could be achieved"
        assert not ((self.use_viewdirs or self.use_normal) and (self.merge_sigma_feat or self.no_sigma)), \
            "merged MLP does not support."
        
        if self.disable_latents:
            w_dim = 0
        elif self.z_dim > 0:  # if input global latents, disable using style vectors
            w_dim, dim_embed, dim_embed_view = 0, dim_embed + self.z_dim, dim_embed_view + self.z_dim
        else:
            w_dim = self.w_dim

        final_in_dim = self.hidden_size
        if self.use_normal:
            final_in_dim += D

        final_out_dim = self.rgb_out_dim * self.shuffle_factor
        if self.merge_sigma_feat:
            final_out_dim += self.shuffle_factor  # predicting sigma
        if self.add_rgb:
            final_out_dim += self.img_channels

        # start building the model
        if self.tcnn_backend:
            try:
                import tinycudann as tcnn
            except ImportError:
                raise ImportError("This sample requires the tiny-cuda-nn extension for PyTorch.")

            assert self.merge_sigma_feat and (not self.predict_rgb) and (not self.add_rgb)
            assert w_dim == 0, "do not use any modulating inputs"
            
            tcnn_config  = {"otype": "FullyFusedMLP", "activation": "ReLU", "output_activation": "None", "n_neurons": 64, "n_hidden_layers": 1}
            self.network = tcnn.Network(dim_embed, final_out_dim, tcnn_config)
            self.num_ws  = 0
            
        else:
            self.fc_in  = Style2Layer(dim_embed, self.hidden_size, w_dim, activation=self.activation)
            self.num_ws = 1
            self.skip_layer = self.n_blocks // 2 - 1 if self.use_skip else None      
            if self.n_blocks > 1:
                self.blocks = nn.ModuleList([
                    Style2Layer(
                        self.hidden_size if i != self.skip_layer else self.hidden_size + dim_embed, 
                        self.hidden_size, 
                        w_dim, activation=self.activation,
                        magnitude_ema_beta=self.magnitude_ema_beta)
                    for i in range(self.n_blocks - 1)])
                self.num_ws += (self.n_blocks - 1)

            if not (self.merge_sigma_feat or self.no_sigma):
                self.sigma_out = ToRGBLayer(self.hidden_size, self.shuffle_factor, w_dim, kernel_size=1)
                self.num_ws += 1
            self.feat_out = ToRGBLayer(final_in_dim, final_out_dim, w_dim, kernel_size=1)
            if (self.z_dim == 0 and (not self.disable_latents)):
                self.num_ws += 1
            else:
                self.num_ws = 0        
            
            if self.use_viewdirs:
                assert self.predict_rgb, "only works when predicting RGB"
                self.from_ray = Conv2dLayer(dim_embed_view, final_out_dim, kernel_size=1, activation='linear')
            
            if self.predict_rgb:   # predict RGB over features
                self.to_rgb = Conv2dLayer(final_out_dim, self.img_channels * self.shuffle_factor, kernel_size=1, activation='linear')
        
    def set_steps(self, steps):
        if hasattr(self, "steps"):
            self.steps.fill_(steps)
        
    def transform_points(self, p, views=False):
        p = p / self.downscale_p_by
        if self.positional_encoding == 'gauss':
            B = self.B_view if views else self.B_pos
            p_transformed = positional_encoding(p, B, 'gauss', self.use_pos)
        elif self.positional_encoding == 'normal':
            L = self.n_freq_posenc_views if views else self.n_freq_posenc
            p_transformed = positional_encoding(p, L, 'normal', self.use_pos)
        else:
            p_transformed = p
        return p_transformed

    def forward(self, p_in, ray_d, z_shape=None, z_app=None, ws=None, shape=None, requires_grad=False, impl=None):
        with torch.set_grad_enabled(self.training or self.use_sdf or requires_grad):
            impl = 'mlp' if self.tcnn_backend else impl
            option, p_in = self.forward_inputs(p_in, shape=shape, impl=impl)
            if self.tcnn_backend:
                with torch.cuda.amp.autocast():
                    p = p_in.squeeze(-1).squeeze(-1)
                    o = self.network(p)
                    sigma_raw, feat = o[:, :self.shuffle_factor], o[:, self.shuffle_factor:]
                sigma_raw = rearrange(sigma_raw, '(b s) d -> b s d', s=option[2]).to(p_in.dtype)
                feat = rearrange(feat,  '(b s) d -> b s d', s=option[2]).to(p_in.dtype)
            else:
                feat, sigma_raw = self.forward_nerf(option, p_in, ray_d,  ws=ws, z_shape=z_shape, z_app=z_app)
        return feat, sigma_raw

    def forward_inputs(self, p_in, shape=None, impl=None):
        # prepare the inputs
        impl = impl if impl is not None else self.implementation
        if (shape is not None) and (impl == 'batch_reshape'):
            height, width, n_steps = shape[1:]
        elif impl == 'flatten_2d':
            (height, width), n_steps = dividable(p_in.shape[1]), 1
        elif impl == 'mlp':
            height, width, n_steps = 1, 1, p_in.shape[1]
        else:
            raise NotImplementedError("looking for more efficient implementation.")        
        p_in = rearrange(p_in, 'b (h w s) d -> (b s) d h w', h=height, w=width, s=n_steps)
        use_normal = self.use_normal or self.use_sdf
        if use_normal:
            p_in.requires_grad_(True)
        return (height, width, n_steps, use_normal), p_in
    
    def forward_nerf(self, option, p_in, ray_d=None, ws=None, z_shape=None, z_app=None):
        height, width, n_steps, use_normal = option
        
        # forward nerf feature networks
        p = self.transform_points(p_in.permute(0,2,3,1))
        if (self.z_dim > 0) and (not self.disable_latents):
            assert (z_shape is not None) and (ws is None)
            z_shape = repeat(z_shape, 'b c -> (b s) h w c', h=height, w=width, s=n_steps)
            p = torch.cat([p, z_shape], -1)
        p = p.permute(0,3,1,2)    # BS x C x H x W

        if height == width == 1:  # MLP
            p = p.squeeze(-1).squeeze(-1)
            
        net = self.fc_in(p, ws[:, 0] if ws is not None else None)
        if self.n_blocks > 1:
            for idx, layer in enumerate(self.blocks):
                ws_i = ws[:, idx + 1] if ws is not None else None
                if (self.skip_layer is not None) and (idx == self.skip_layer):
                    net = torch.cat([net, p], 1)
                net = layer(net, ws_i, up=1)

        # forward to get the final results
        w_idx = self.n_blocks  # fc_in, self.blocks
                
        feat_inputs = [net]
        if not (self.merge_sigma_feat or self.no_sigma):
            ws_i      = ws[:, w_idx] if ws is not None else None
            sigma_out = self.sigma_out(net, ws_i)
            if use_normal:
                gradients, = grad(
                    outputs=sigma_out, inputs=p_in, 
                    grad_outputs=torch.ones_like(sigma_out, requires_grad=False), 
                    retain_graph=True, create_graph=True, only_inputs=True)
                feat_inputs.append(gradients)
    
        ws_i = ws[:, -1] if ws is not None else None
        net = torch.cat(feat_inputs, 1) if len(feat_inputs) > 1 else net
        feat_out = self.feat_out(net, ws_i)  # this is used for lowres output

        if self.merge_sigma_feat:  # split sigma from the feature
            sigma_out, feat_out = feat_out[:, :self.shuffle_factor], feat_out[:, self.shuffle_factor:]
        elif self.no_sigma:
            sigma_out = None
                
        if self.predict_rgb:
            if self.use_viewdirs and ray_d is not None:
                ray_d = ray_d / torch.norm(ray_d, dim=-1, keepdim=True)
                ray_d = self.transform_points(ray_d, views=True)
                if self.z_dim > 0:
                    ray_d = torch.cat([ray_d, repeat(z_app, 'b c -> b (h w s) c', h=height, w=width, s=n_steps)], -1)
                ray_d = rearrange(ray_d, 'b (h w s) d -> (b s) d h w', h=height, w=width, s=n_steps)
                feat_ray = self.from_ray(ray_d)
                rgb = self.to_rgb(F.leaky_relu(feat_out + feat_ray))
            else:
                rgb = self.to_rgb(feat_out)

            if self.final_sigmoid_act:
                rgb = torch.sigmoid(rgb)    
            if self.normalized_feat:
                feat_out = feat_out / (1e-7 + feat_out.norm(dim=-1, keepdim=True))
            feat_out = torch.cat([rgb, feat_out], 1)

        # transform back
        if feat_out.ndim == 2:  # mlp mode
            sigma_out = rearrange(sigma_out, '(b s) d -> b s d', s=n_steps) if sigma_out is not None else None
            feat_out  = rearrange(feat_out,  '(b s) d -> b s d', s=n_steps)
        else:
            sigma_out = rearrange(sigma_out, '(b s) d h w -> b (h w s) d', s=n_steps) if sigma_out is not None else None
            feat_out  = rearrange(feat_out,  '(b s) d h w -> b (h w s) d', s=n_steps)
        return feat_out, sigma_out


@persistence.persistent_class
class CameraGenerator(torch.nn.Module):
    def __init__(self, in_dim=2, hi_dim=128, out_dim=2):
        super().__init__()
        self.affine1 = FullyConnectedLayer(in_dim, hi_dim, activation='lrelu')
        self.affine2 = FullyConnectedLayer(hi_dim, hi_dim, activation='lrelu')
        self.proj    = FullyConnectedLayer(hi_dim, out_dim)
        
    def forward(self, x):
        cam = self.proj(self.affine2(self.affine1(x)))
        return cam


@persistence.persistent_class
class CameraRay(object):

    range_u          = (0, 0)
    range_v          = (0.25, 0.25)
    range_radius     = (2.732, 2.732)
    depth_range      = [0.5, 6.]
    gaussian_camera  = False
    angular_camera   = False
    intersect_ball   = False
    fov              = 49.13
    bg_start         = 1.0
    depth_transform  = None     # "LogWarp" or "InverseWarp"
    dists_normalized = False    # use normalized interval instead of real dists
    random_rotate    = False
    ray_align_corner = True
    
    nonparam_cameras = None

    def __init__(self, camera_kwargs, **other_kwargs):
        if len(camera_kwargs) == 0:  # for compitatbility of old checkpoints
            camera_kwargs.update(other_kwargs)        
        for key in camera_kwargs:
            if hasattr(self, key):
                setattr(self, key, camera_kwargs[key])
        self.camera_matrix = get_camera_mat(fov=self.fov)

    def prepare_pixels(self, img_res, tgt_res, vol_res, camera_matrices, theta, margin=0, **unused):
        if self.ray_align_corner:    
            all_pixels = self.get_pixel_coords(img_res, camera_matrices, theta=theta)
            all_pixels = rearrange(all_pixels, 'b (h w) c -> b c h w', h=img_res, w=img_res)
            tgt_pixels = F.interpolate(all_pixels, size=(tgt_res, tgt_res), mode='nearest') if tgt_res < img_res else all_pixels.clone()
            vol_pixels = F.interpolate(tgt_pixels, size=(vol_res, vol_res), mode='nearest') if tgt_res > vol_res else tgt_pixels.clone()
            vol_pixels = rearrange(vol_pixels, 'b c h w -> b (h w) c')
            
        else:  # coordinates not aligned!
            tgt_pixels = self.get_pixel_coords(tgt_res, camera_matrices, corner_aligned=False, theta=theta)
            vol_pixels = self.get_pixel_coords(vol_res, camera_matrices, corner_aligned=False, theta=theta, margin=margin) \
                if (tgt_res > vol_res) or (margin > 0) else tgt_pixels.clone()
            tgt_pixels = rearrange(tgt_pixels, 'b (h w) c -> b c h w', h=tgt_res, w=tgt_res)
        return vol_pixels, tgt_pixels

    def prepare_pixels_regularization(self, tgt_pixels, n_reg_samples):
        # only apply when size is bigger than voxel resolution
        pace = tgt_pixels.size(-1) // n_reg_samples
        idxs = torch.arange(0, tgt_pixels.size(-1), pace, device=tgt_pixels.device)           # n_reg_samples
        u_xy = torch.rand(tgt_pixels.size(0), 2, device=tgt_pixels.device)
        u_xy = (u_xy * pace).floor().long()    # batch_size x 2
        x_idxs, y_idxs = idxs[None,:] + u_xy[:,:1], idxs[None,:] + u_xy[:,1:]
        rand_indexs = (x_idxs[:,None,:] + y_idxs[:,:,None] * tgt_pixels.size(-1)).reshape(tgt_pixels.size(0), -1)
        tgt_pixels  = rearrange(tgt_pixels, 'b c h w -> b (h w) c')
        rand_pixels = tgt_pixels.gather(1, rand_indexs.unsqueeze(-1).repeat(1,1,2))
        return rand_pixels, rand_indexs

    def get_roll(self, ws, training=True, theta=None, **unused):
        if (self.random_rotate is not None) and training:
            theta = torch.randn(ws.size(0)).to(ws.device) * self.random_rotate / 2
            theta = theta / 180 * math.pi
        else:
            if theta is not None:
                theta = torch.ones(ws.size(0)).to(ws.device) * theta
        return theta

    def get_camera(self, batch_size, device, mode='random', fov=None, force_uniform=False):
        if fov is not None:
            camera_matrix = get_camera_mat(fov)
        else:
            camera_matrix = self.camera_matrix
        camera_mat = camera_matrix.repeat(batch_size, 1, 1).to(device)
        reg_loss = None  # TODO: useless

        if isinstance(mode, list):   
            # default camera generator, we assume input mode is linear
            if len(mode) == 3:
                val_u, val_v, val_r = mode
                r0 = self.range_radius[0]
                r1 = self.range_radius[1]
            else:
                val_u, val_v, val_r, r_s = mode
                r0 = self.range_radius[0] * r_s
                r1 = self.range_radius[1] * r_s
            
            world_mat = get_camera_pose(
                self.range_u, self.range_v, [r0, r1], 
                val_u, val_v, val_r, 
                batch_size=batch_size, 
                gaussian=False,   # input mode is by default uniform
                angular=self.angular_camera).to(device)
        
        elif isinstance(mode, torch.Tensor):    
            world_mat, mode = get_camera_pose_v2(
                self.range_u, self.range_v, self.range_radius, mode, 
                gaussian=self.gaussian_camera and (not force_uniform), 
                angular=self.angular_camera)
            world_mat = world_mat.to(device)
            mode = torch.stack(mode, 1).to(device)
        
        else:
            world_mat, mode = get_random_pose(
                self.range_u, self.range_v, 
                self.range_radius, batch_size,
                gaussian=self.gaussian_camera, 
                angular=self.angular_camera)            
            world_mat = world_mat.to(device)
            mode = torch.stack(mode, 1).to(device)
        return camera_mat.float(), world_mat.float(), mode, reg_loss

    def get_transformed_depth(self, di, reversed=False):
        depth_range = self.depth_range
        
        if (self.depth_transform is None) or (self.depth_transform == 'None'):
            g_fwd, g_inv = lambda x: x, lambda x: x
        elif self.depth_transform == 'LogWarp':
            g_fwd, g_inv = math.log, torch.exp
        elif self.depth_transform == 'InverseWarp':
            g_fwd, g_inv = lambda x: 1/x, lambda x: 1/x
        else:
            raise NotImplementedError

        if not reversed:
            return g_inv(g_fwd(depth_range[1]) * di + g_fwd(depth_range[0]) * (1 - di))
        else:
            d0 = (g_fwd(di) - g_fwd(depth_range[0])) / (g_fwd(depth_range[1]) - g_fwd(depth_range[0])) 
            return d0.clip(min=0, max=1)
    
    def get_evaluation_points(self, pixels_world=None, camera_world=None, di=None, p_i=None, no_reshape=False, transform=None):
        if p_i is None:
            batch_size = pixels_world.shape[0]
            n_steps = di.shape[-1]
            ray_i = pixels_world - camera_world
            p_i = camera_world.unsqueeze(-2).contiguous() + \
                di.unsqueeze(-1).contiguous() * ray_i.unsqueeze(-2).contiguous()
            ray_i = ray_i.unsqueeze(-2).repeat(1, 1, n_steps, 1)

        else:
            assert no_reshape, "only used to transform points to a warped space"

        if transform is None:
            transform = self.depth_transform

        if transform == 'LogWarp':
            c = torch.tensor([1., 0., 0.]).to(p_i.device)
            p_i = normalization_inverse_sqrt_dist_centered(
                p_i, c[None, None, None, :], self.depth_range[1])
        
        elif transform == 'InverseWarp':
            # https://arxiv.org/pdf/2111.12077.pdf
            p_n = p_i.norm(p=2, dim=-1, keepdim=True).clamp(min=1e-7)
            con = p_n.ge(1).type_as(p_n)
            p_i = p_i * (1 -con) + (2 - 1 / p_n) * (p_i / p_n) * con
            
        if no_reshape:
            return p_i

        assert(p_i.shape == ray_i.shape)
        p_i = p_i.reshape(batch_size, -1, 3)
        ray_i = ray_i.reshape(batch_size, -1, 3)
        return p_i, ray_i

    def get_evaluation_points_bg(self, pixels_world, camera_world, di):
        batch_size = pixels_world.shape[0]
        n_steps    = di.shape[-1]
        n_pixels   = pixels_world.shape[1]
        ray_world  = pixels_world - camera_world
        ray_world  = ray_world / ray_world.norm(dim=-1, keepdim=True)  # normalize
        
        camera_world = camera_world.unsqueeze(-2).expand(batch_size, n_pixels, n_steps, 3)
        ray_world = ray_world.unsqueeze(-2).expand(batch_size, n_pixels, n_steps, 3)
        bg_pts, _ = depth2pts_outside(camera_world, ray_world, di)    # di: 1 ---> 0

        bg_pts    = bg_pts.reshape(batch_size, -1, 4)
        ray_world = ray_world.reshape(batch_size, -1, 3)
        return bg_pts, ray_world

    def add_noise_to_interval(self, di):
        di_mid  = .5 * (di[..., 1:] + di[..., :-1])
        di_high = torch.cat([di_mid, di[..., -1:]], dim=-1)
        di_low  = torch.cat([di[..., :1], di_mid], dim=-1)
        noise   = torch.rand_like(di_low)
        ti      = di_low + (di_high - di_low) * noise
        return ti

    def calc_volume_weights(self, sigma, z_vals=None, ray_vector=None, dists=None, last_dist=1e10):
        if dists is None:
            dists = z_vals[..., 1:] - z_vals[..., :-1]
            if ray_vector is not None:
                dists = dists * torch.norm(ray_vector, dim=-1, keepdim=True)
            dists = torch.cat([dists, torch.ones_like(dists[..., :1]) * last_dist], dim=-1)
        alpha = 1.-torch.exp(-F.relu(sigma)*dists)

        if last_dist > 0:
            alpha[..., -1] = 1
            
        # alpha = 1.-torch.exp(-sigma * dists)
        T = torch.cumprod(torch.cat([
                torch.ones_like(alpha[:, :, :1]),
                (1. - alpha + 1e-10), ], dim=-1), dim=-1)[..., :-1]
        weights = alpha * T
        return weights, T[..., -1], dists

    def get_pixel_coords(self, tgt_res, camera_matrices, corner_aligned=True, margin=0, theta=None, invert_y=True):
        device     = camera_matrices[0].device
        batch_size = camera_matrices[0].shape[0]
        # margin = self.margin if margin is None else margin
        full_pixels = arange_pixels((tgt_res, tgt_res), 
            batch_size, invert_y_axis=invert_y, margin=margin,
            corner_aligned=corner_aligned).to(device)
        if (theta is not None):
            theta = theta.unsqueeze(-1)
            x = full_pixels[..., 0] * torch.cos(theta) - full_pixels[..., 1] * torch.sin(theta)
            y = full_pixels[..., 0] * torch.sin(theta) + full_pixels[..., 1] * torch.cos(theta)
            full_pixels = torch.stack([x, y], -1)
        return full_pixels

    def get_origin_direction(self, pixels, camera_matrices):
        camera_mat, world_mat = camera_matrices[:2]
        if camera_mat.size(0) < pixels.size(0):
            camera_mat = repeat(camera_mat, 'b c d -> (b s) c d', s=pixels.size(0)//camera_mat.size(0))
        if world_mat.size(0) < pixels.size(0):
            world_mat = repeat(world_mat, 'b c d -> (b s) c d', s=pixels.size(0)//world_mat.size(0))
        pixels_world = image_points_to_world(pixels, camera_mat=camera_mat, world_mat=world_mat)
        camera_world = origin_to_world(pixels.size(1), camera_mat=camera_mat, world_mat=world_mat)
        ray_vector = pixels_world - camera_world
        return pixels_world, camera_world, ray_vector

    def set_camera_prior(self, dataset_cams):
        self.nonparam_cameras = dataset_cams


@persistence.persistent_class
class VolumeRenderer(object):

    n_ray_samples     = 14
    n_bg_samples      = 4
    n_final_samples   = None    # final nerf steps after upsampling (optional)
    sigma_type        = 'relu'  # other allowed options including, "abs", "shiftedsoftplus", "exp"
    
    hierarchical      = True
    fine_only         = False
    no_background     = False
    white_background  = False
    mask_background   = False
    pre_volume_size   = None
    
    bound             = None
    density_p_target  = 1.0
    tv_loss_weight    = 0.0     # for now only works for density-based voxels

    def __init__(self, renderer_kwargs, camera_ray, input_encoding=None, **other_kwargs):
        if len(renderer_kwargs) == 0:  # for compitatbility of old checkpoints
            renderer_kwargs.update(other_kwargs)        
        for key in renderer_kwargs:
            if hasattr(self, key):
                setattr(self, key, renderer_kwargs[key])
        self.C = camera_ray
        self.I = input_encoding

    def split_feat(self, x, img_channels, white_color=None, split_rgb=True):
        img = x[:, :img_channels]
        if split_rgb:
            x = x[:, img_channels:]
        if (white_color is not None) and self.white_background:
            img = img + white_color
        return x, img

    def get_bound(self):
        if self.bound is not None:
            return self.bound

        # when applying normalization, the points are restricted inside R=2 ball
        if self.C.depth_transform == 'InverseWarp':
            bound = 2
        else:  # TODO: this is a bit hacky as we assume object at origin
            bound = (self.C.depth_range[1] - self.C.depth_range[0])
        return bound

    def get_density(self, sigma_raw, fg_nerf, no_noise=False, training=False):
        if fg_nerf.use_sdf:
            sigma = fg_nerf.density_transform.density_func(sigma_raw)
        elif self.sigma_type == 'relu':
            if training and (not no_noise):    # adding noise to pass gradient?
                sigma_raw = sigma_raw + torch.randn_like(sigma_raw)
            sigma = F.relu(sigma_raw)
        elif self.sigma_type == 'shiftedsoftplus':  # https://arxiv.org/pdf/2111.11215.pdf
            sigma = F.softplus(sigma_raw - 1)       # 1 is the shifted bias.
        elif self.sigma_type == 'exp_truncated':    # density in the log-space
            sigma = torch.exp(5 - F.relu(5 - (sigma_raw - 1)))  # up-bound = 5, also shifted by 1
        else:
            sigma = sigma_raw
        return sigma
    
    def forward_hierarchical_sampling(self, di, weights, n_steps, det=False):
        di_mid = 0.5 * (di[..., :-1] + di[..., 1:])
        n_bins = di_mid.size(-1)
        batch_size = di.size(0)
        di_fine = sample_pdf(
            di_mid.reshape(-1, n_bins), 
            weights.reshape(-1, n_bins+1)[:, 1:-1],
            n_steps, det=det).reshape(batch_size, -1, n_steps)
        return di_fine

    def forward_rendering_with_pre_density(self, H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles):
        pixels_world, camera_world, ray_vector = nerf_input_cams
        z_shape_obj, z_app_obj = latent_codes[:2]
        height, width = dividable(H.n_points)
        fg_shape = [H.batch_size, height, width, H.n_steps]
        bound = self.get_bound()

        # sample points
        di = torch.linspace(0., 1., steps=H.n_steps).to(H.device)
        di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points)
        if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
            di = self.C.add_noise_to_interval(di)
        di_trs = self.C.get_transformed_depth(di)
        p_i, r_i = self.C.get_evaluation_points(pixels_world, camera_world, di_trs)
        p_i = self.I.query_input_features(p_i, nerf_input_feats, fg_shape, bound)
        
        pre_sigma_raw, p_i = p_i[...,:self.I.sigma_dim].sum(dim=-1, keepdim=True), p_i[..., self.I.sigma_dim:] 
        pre_sigma = self.get_density(rearrange(pre_sigma_raw, 'b (n s) () -> b n s', s=H.n_steps), 
                                     fg_nerf, training=H.training)
        
        pre_weights = self.C.calc_volume_weights(
            pre_sigma, di if self.C.dists_normalized else di_trs, ray_vector, last_dist=1e10)[0]
        
        feat, _ = fg_nerf(p_i, r_i, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape)
        feat = rearrange(feat, 'b (n s) d -> b n s d', s=H.n_steps)
        feat = torch.sum(pre_weights.unsqueeze(-1) * feat, dim=-2)
        
        output.feat += [feat]
        output.fg_weights = pre_weights
        output.fg_depths  = (di, di_trs)  
        return output

    def forward_sampling(self, H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles):
        # TODO: experimental research code. Not functional yet.
         
        pixels_world, camera_world, ray_vector = nerf_input_cams
        z_shape_obj, z_app_obj = latent_codes[:2]
        height, width = dividable(H.n_points)
        bound = self.get_bound()
        
        # just to simulate
        H.n_steps = 64
        di = torch.linspace(0., 1., steps=H.n_steps).to(H.device)
        di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points)
        if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
            di = self.C.add_noise_to_interval(di)
        di_trs = self.C.get_transformed_depth(di)
        
        fg_shape = [H.batch_size, height, width, 1]
        
        # iteration in the loop (?)
        feats, sigmas = [], []
        with torch.enable_grad():
            di_trs.requires_grad_(True)
            for s in range(di_trs.shape[-1]):
                di_s = di_trs[..., s:s+1]
                p_i, r_i = self.C.get_evaluation_points(pixels_world, camera_world, di_s)
                if nerf_input_feats is not None:
                    p_i = self.I.query_input_features(p_i, nerf_input_feats, fg_shape, bound)        
                feat, sigma_raw = fg_nerf(p_i, r_i, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape, requires_grad=True)
                sigma = self.get_density(sigma_raw, fg_nerf, training=H.training)
            feats += [feat]
            sigmas += [sigma]
        feat, sigma = torch.stack(feats, 2), torch.cat(sigmas, 2)
        fg_weights, bg_lambda = self.C.calc_volume_weights(
            sigma, di if self.C.dists_normalized else di_trs,  # use real dists for computing weights
            ray_vector, last_dist=0 if not H.fg_inf_depth else 1e10)[:2]
        fg_feat = torch.sum(fg_weights.unsqueeze(-1) * feat, dim=-2)
        
        output.feat       += [fg_feat]
        output.full_out   += [feat]
        output.fg_weights  = fg_weights
        output.bg_lambda   = bg_lambda
        output.fg_depths   = (di, di_trs)
        return output
        
    def forward_rendering(self, H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles):
        pixels_world, camera_world, ray_vector = nerf_input_cams
        z_shape_obj, z_app_obj = latent_codes[:2]
        height, width = dividable(H.n_points)
        fg_shape = [H.batch_size, height, width, H.n_steps]
        bound = self.get_bound()

        # sample points
        di = torch.linspace(0., 1., steps=H.n_steps).to(H.device)
        di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points)
        if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
            di = self.C.add_noise_to_interval(di)
        di_trs = self.C.get_transformed_depth(di)
        p_i, r_i = self.C.get_evaluation_points(pixels_world, camera_world, di_trs)

        if nerf_input_feats is not None:
            p_i = self.I.query_input_features(p_i, nerf_input_feats, fg_shape, bound)
        
        feat, sigma_raw = fg_nerf(p_i, r_i, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape)
        feat = rearrange(feat, 'b (n s) d -> b n s d', s=H.n_steps)
        sigma_raw = rearrange(sigma_raw.squeeze(-1), 'b (n s) -> b n s', s=H.n_steps) 
        sigma = self.get_density(sigma_raw, fg_nerf, training=H.training)         
        fg_weights, bg_lambda = self.C.calc_volume_weights(
            sigma, di if self.C.dists_normalized else di_trs,  # use real dists for computing weights
            ray_vector, last_dist=0 if not H.fg_inf_depth else 1e10)[:2]
        
        if self.hierarchical and (not H.get('disable_hierarchical', False)):
            with torch.no_grad():
                di_fine = self.forward_hierarchical_sampling(di, fg_weights, H.n_steps, det=(not H.training))
            di_trs_fine = self.C.get_transformed_depth(di_fine)
            p_f, r_f = self.C.get_evaluation_points(pixels_world, camera_world, di_trs_fine)
            if nerf_input_feats is not None:
                p_f = self.I.query_input_features(p_f, nerf_input_feats, fg_shape, bound)

            feat_f, sigma_raw_f = fg_nerf(p_f, r_f, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape)
            feat_f      = rearrange(feat_f, 'b (n s) d -> b n s d', s=H.n_steps)
            sigma_raw_f = rearrange(sigma_raw_f.squeeze(-1), 'b (n s) -> b n s', s=H.n_steps)
            sigma_f     = self.get_density(sigma_raw_f, fg_nerf, training=H.training)
            
            feat      = torch.cat([feat_f, feat], 2)
            sigma     = torch.cat([sigma_f, sigma], 2)
            sigma_raw = torch.cat([sigma_raw_f, sigma_raw], 2)
            di        = torch.cat([di_fine, di], 2)
            di_trs    = torch.cat([di_trs_fine, di_trs], 2)
            
            di, indices = torch.sort(di, dim=2)
            di_trs    = torch.gather(di_trs, 2, indices)
            sigma     = torch.gather(sigma, 2, indices)
            sigma_raw = torch.gather(sigma_raw, 2, indices)
            feat      = torch.gather(feat, 2, repeat(indices, 'b n s -> b n s d', d=feat.size(-1)))

            fg_weights, bg_lambda = self.C.calc_volume_weights(
                sigma, di if self.C.dists_normalized else di_trs,  # use real dists for computing weights, 
                ray_vector, last_dist=0 if not H.fg_inf_depth else 1e10)[:2]

        fg_feat = torch.sum(fg_weights.unsqueeze(-1) * feat, dim=-2)
        
        output.feat       += [fg_feat]
        output.full_out   += [feat]
        output.fg_weights  = fg_weights
        output.bg_lambda   = bg_lambda
        output.fg_depths   = (di, di_trs)
        return output

    def forward_rendering_background(self, H, output, bg_nerf, nerf_input_cams, latent_codes, styles_bg):
        pixels_world, camera_world, _ = nerf_input_cams
        z_shape_bg, z_app_bg = latent_codes[2:]
        height, width = dividable(H.n_points)
        bg_shape = [H.batch_size, height, width, H.n_bg_steps]            
        if H.fixed_input_cams is not None:
            pixels_world, camera_world, _ = H.fixed_input_cams

        # render background, use NeRF++ inverse sphere parameterization
        di = torch.linspace(-1., 0., steps=H.n_bg_steps).to(H.device)
        di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points) * self.C.bg_start
        if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
            di = self.C.add_noise_to_interval(di)
        p_bg, r_bg = self.C.get_evaluation_points_bg(pixels_world, camera_world, -di)

        feat, sigma_raw = bg_nerf(p_bg, r_bg, z_shape_bg, z_app_bg, ws=styles_bg, shape=bg_shape)
        feat      = rearrange(feat, 'b (n s) d -> b n s d', s=H.n_bg_steps)
        sigma_raw = rearrange(sigma_raw.squeeze(-1), 'b (n s) -> b n s', s=H.n_bg_steps)
        sigma     = self.get_density(sigma_raw, bg_nerf, training=H.training)
        bg_weights = self.C.calc_volume_weights(sigma, di, None)[0]
        bg_feat = torch.sum(bg_weights.unsqueeze(-1) * feat, dim=-2)
        
        if output.get('bg_lambda', None) is not None:
            bg_feat = output.bg_lambda.unsqueeze(-1) * bg_feat
        output.feat       += [bg_feat]
        output.full_out   += [feat]
        output.bg_weights  = bg_weights
        output.bg_depths   = di
        return output
        
    def forward_volume_rendering(
        self, 
        nerf_modules,      # (fg_nerf, bg_nerf)
        camera_matrices,   # camera (K, RT)
        vol_pixels,

        nerf_input_feats       = None,
        latent_codes           = None,
        styles                 = None,
        styles_bg              = None,
        not_render_background  = False, 
        only_render_background = False,

        render_option          = None,
        return_full            = False,
        
        alpha                  = 0,
        **unused):

        assert (latent_codes is not None) or (styles is not None)
        assert self.no_background or (nerf_input_feats is None), "input features do not support background field"
        
        # hyper-parameters for rendering
        H      = EasyDict(**unused)
        output = EasyDict()
        output.reg_loss = EasyDict()
        output.feat = []
        output.full_out = []

        if render_option is None:
            render_option = ""
        H.render_option = render_option
        H.alpha         = alpha

        # prepare for rendering (parameters)
        fg_nerf, bg_nerf  = nerf_modules
        
        H.training     = fg_nerf.training
        H.device       = camera_matrices[0].device
        H.batch_size   = camera_matrices[0].shape[0]
        H.img_channels = fg_nerf.img_channels
        H.n_steps      = self.n_ray_samples
        H.n_bg_steps   = self.n_bg_samples
        if alpha == -1:
            H.n_steps  = 20  # just for memory safe.
        if "steps" in render_option:
            H.n_steps  = [int(r.split(':')[1]) for r in H.render_option.split(',') if r[:5] == 'steps'][0]

        # prepare for pixels for generating images
        if isinstance(vol_pixels, tuple):
            vol_pixels, rand_pixels = vol_pixels
            pixels    = torch.cat([vol_pixels, rand_pixels], 1)
            H.rnd_res = int(math.sqrt(rand_pixels.size(1)))
        else:
            pixels, rand_pixels, H.rnd_res = vol_pixels, None, None
        H.tgt_res, H.n_points = int(math.sqrt(vol_pixels.size(1))), pixels.size(1)
        nerf_input_cams = self.C.get_origin_direction(pixels, camera_matrices)

        # set up an frozen camera for background if necessary
        if ('freeze_bg' in H.render_option) and (bg_nerf is not None):
            pitch, yaw = 0.2 + np.pi/2, 0
            range_u, range_v = self.C.range_u, self.C.range_v
            u = (yaw - range_u[0])   / (range_u[1] - range_u[0])
            v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
            fixed_camera = self.C.get_camera(
                batch_size=H.batch_size, mode=[u, v, 0.5], device=H.device)
            H.fixed_input_cams = self.C.get_origin_direction(pixels, fixed_camera)
        else:
            H.fixed_input_cams = None
        
        H.fg_inf_depth = (self.no_background or not_render_background) and (not self.white_background)
        assert(not (not_render_background and only_render_background))
        
        # volume rendering options: bg_weights, bg_lambda = None, None
        if (nerf_input_feats is not None) and \
            len(nerf_input_feats) == 4 and \
            nerf_input_feats[2] == 'tri_vector' and \
            self.I.sigma_dim > 0 and H.fg_inf_depth:   
            # volume rendering with pre-computed density similar to tensor-decomposition
            output = self.forward_rendering_with_pre_density(
                H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles)

        else: 
            # standard volume rendering 
            if not only_render_background:
                output = self.forward_rendering(
                    H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles)
                
            # background rendering (NeRF++)
            if (not not_render_background) and (not self.no_background):
                output = self.forward_rendering_background(
                    H, output, bg_nerf, nerf_input_cams, latent_codes, styles_bg)
                         
        if ('early' in render_option) and ('value' not in render_option):
            return self.gen_optional_output(
                H, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles, output)

        # ------------------------------------------- PREPARE FULL OUTPUT (NO 2D aggregation) -------------------------------------------- #        
        vol_len   = vol_pixels.size(1)
        feat_map  = sum(output.feat)
        full_x    = rearrange(feat_map[:, :vol_len], 'b (h w) d -> b d h w', h=H.tgt_res)
        split_rgb = fg_nerf.add_rgb or fg_nerf.predict_rgb
        
        full_out = self.split_feat(full_x, H.img_channels, None, split_rgb=split_rgb) 
        if rand_pixels is not None:   # used in full supervision (debug later)
            if return_full:
                assert (fg_nerf.predict_rgb or fg_nerf.add_rgb)
                rand_outputs = [f[:,vol_pixels.size(1):] for f in output.full_out]
                full_weights = torch.cat([output.fg_weights, output.bg_weights * output.bg_lambda.unsqueeze(-1)], -1) \
                    if output.get('bg_weights', None) is not None else output.fg_weights
                full_weights = full_weights[:,vol_pixels.size(1):]
                full_weights = rearrange(full_weights, 'b (h w) s -> b s h w', h=H.rnd_res, w=H.rnd_res)

                lh, lw = dividable(full_weights.size(1))
                full_x = rearrange(torch.cat(rand_outputs, 2), 'b (h w) (l m) d -> b d (l h) (m w)', 
                                   h=H.rnd_res, w=H.rnd_res, l=lh, m=lw)
                full_x, full_img = self.split_feat(full_x, H.img_channels, split_rgb=split_rgb)
                output.rand_out = (full_x, full_img, full_weights)
            
            else:
                rand_x = rearrange(feat_map[:, vol_len:], 'b (h w) d -> b d h w', h=H.rnd_res)
                output.rand_out = self.split_feat(rand_x, H.img_channels, split_rgb=split_rgb)
        output.full_out = full_out            
        return output

    def post_process_outputs(self, outputs, freeze_nerf=False):
        if freeze_nerf:
            outputs = [x.detach() if isinstance(x, torch.Tensor) else x for x in outputs]
        x, img = outputs[0], outputs[1]
        probs  = outputs[2] if len(outputs) == 3 else None
        return x, img, probs

    def gen_optional_output(self, H, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles, output):
        _, camera_world, ray_vector = nerf_input_cams
        z_shape_obj, z_app_obj = latent_codes[:2]
        fg_depth_map = torch.sum(output.fg_weights * output.fg_depths[1], dim=-1, keepdim=True)
        img = camera_world[:, :1] + fg_depth_map * ray_vector
        img = img.permute(0,2,1).reshape(-1, 3, H.tgt_res, H.tgt_res)
        
        if 'input_feats' in H.render_option:
            a, b = [r.split(':')[1:] for r in H.render_option.split(',') if r.startswith('input_feats')][0]
            a, b = int(a), int(b)
            if nerf_input_feats[0] == 'volume':
                img = nerf_input_feats[1][:,a:a+3,b,:,:]
            elif nerf_input_feats[0] == 'tri_plane':
                img = nerf_input_feats[1][:,b,a:a+3,:,:]
            elif nerf_input_feats[0] == 'hash_table':
                assert self.I.hash_mode == 'grid_hash'
                img = nerf_input_feats[1][:,self.I.offsets[b]:self.I.offsets[b+1], :]
                siz = int(np.ceil(img.size(1)**(1/3)))
                img = rearrange(img, 'b (d h w) c -> b (d c) h w', h=siz, w=siz, d=siz)
                img = img[:, a:a+3]
            else:
                raise NotImplementedError

        if 'normal' in H.render_option.split(','):
            shift_l, shift_r = img[:,:,2:,:], img[:,:,:-2,:]
            shift_u, shift_d = img[:,:,:,2:], img[:,:,:,:-2]
            diff_hor = normalize(shift_r - shift_l, axis=1)[0][:, :, :, 1:-1]
            diff_ver = normalize(shift_u - shift_d, axis=1)[0][:, :, 1:-1, :]
            normal = torch.cross(diff_hor, diff_ver, dim=1)
            img = normalize(normal, axis=1)[0]

        if 'gradient' in H.render_option.split(','):
            points, _ = self.C.get_evaluation_points(camera_world + ray_vector, camera_world, output.fg_depths[1])
            fg_shape  = [H.batch_size, H.tgt_res, H.tgt_res, output.fg_depths[1].size(-1)]
            with torch.enable_grad():
                points.requires_grad_(True)
                inputs = self.I.query_input_features(points, nerf_input_feats, fg_shape, self.get_bound(), True) \
                        if nerf_input_feats is not None else points
                if (nerf_input_feats is not None) and len(nerf_input_feats) == 4 and nerf_input_feats[2] == 'tri_vector' and (self.I.sigma_dim > 0):
                    sigma_out = inputs[..., :8].sum(dim=-1, keepdim=True)
                else:
                    _, sigma_out = fg_nerf(inputs, None, ws=styles, shape=fg_shape, z_shape=z_shape_obj, z_app=z_app_obj, requires_grad=True)
                gradients, = grad(
                    outputs=sigma_out, inputs=points, 
                    grad_outputs=torch.ones_like(sigma_out, requires_grad=False), 
                    retain_graph=True, create_graph=True, only_inputs=True)
            gradients = rearrange(gradients, 'b (n s) d -> b n s d', s=output.fg_depths[1].size(-1))
            avg_grads = (gradients * output.fg_weights.unsqueeze(-1)).sum(-2)
            avg_grads = F.normalize(avg_grads, p=2, dim=-1)
            normal    = rearrange(avg_grads, 'b (h w) s -> b s h w', h=H.tgt_res, w=H.tgt_res)
            img       = -normal

        return {'full_out': (None, img)}


@persistence.persistent_class
class Upsampler(object):

    no_2d_renderer   = False
    no_residual_img  = False
    block_reses      = None
    shared_rgb_style = False
    upsample_type    = 'default'
    img_channels     = 3
    in_res           = 32
    out_res          = 512
    channel_base     = 1
    channel_base_sz  = None
    channel_max      = 512
    channel_dict     = None
    out_channel_dict = None

    def __init__(self, upsampler_kwargs, **other_kwargs):
        # for compitatbility of old checkpoints
        for key in other_kwargs:
            if hasattr(self, key) and (key not in upsampler_kwargs):
                upsampler_kwargs[key] = other_kwargs[key]
        for key in upsampler_kwargs:
            if hasattr(self, key):
                setattr(self, key, upsampler_kwargs[key])

        self.out_res_log2 = int(np.log2(self.out_res))

        # set up upsamplers
        if self.block_reses is None:
            self.block_resolutions = [2 ** i for i in range(2, self.out_res_log2 + 1)]
            self.block_resolutions = [b for b in self.block_resolutions if b > self.in_res]
        else:
            self.block_resolutions = self.block_reses
        
        if self.no_2d_renderer:
            self.block_resolutions = []

    def build_network(self, w_dim, input_dim, **block_kwargs):
        upsamplers = []
        if len(self.block_resolutions) > 0:  # nerf resolution smaller than image
            channel_base       = int(self.channel_base * 32768) if self.channel_base_sz is None else self.channel_base_sz
            fp16_resolution    = self.block_resolutions[0] * 2 # do not use fp16 for the first block

            if self.channel_dict is None:
                channels_dict  = {res: min(channel_base // res, self.channel_max) for res in self.block_resolutions}
            else:
                channels_dict  = self.channel_dict 

            if self.out_channel_dict is not None:
                img_channels   = self.out_channel_dict
            else:
                img_channels   = {res: self.img_channels for res in self.block_resolutions}
            
            for ir, res in enumerate(self.block_resolutions):
                res_before   = self.block_resolutions[ir-1] if ir > 0 else self.in_res
                in_channels  = channels_dict[res_before] if ir > 0 else input_dim
                out_channels = channels_dict[res]                
                use_fp16     = (res >= fp16_resolution) # TRY False
                is_last      = (ir == (len(self.block_resolutions) - 1))
                no_upsample  = (res == res_before)
                block        = util.construct_class_by_name(
                    class_name=block_kwargs.get('block_name', "training.networks.SynthesisBlock"),
                    in_channels=in_channels, 
                    out_channels=out_channels, 
                    w_dim=w_dim, 
                    resolution=res,
                    img_channels=img_channels[res], 
                    is_last=is_last, 
                    use_fp16=use_fp16, 
                    disable_upsample=no_upsample,
                    block_id=ir,
                    **block_kwargs)

                upsamplers  += [{
                    'block': block,
                    'num_ws': block.num_conv if not is_last else block.num_conv + block.num_torgb,
                    'name': f'b{res}' if res_before != res else f'b{res}_l{ir}'
                }]
            self.num_ws = sum([u['num_ws'] for u in upsamplers])
        return upsamplers

    def forward_ws_split(self, ws, blocks):
        block_ws, w_idx = [], 0
        for ir, res in enumerate(self.block_resolutions):
            block = blocks[ir]
            if self.shared_rgb_style:
                w     = ws.narrow(1, w_idx, block.num_conv)
                w_img = ws.narrow(1, -block.num_torgb, block.num_torgb)  # TODO: tRGB to use the same style (?)
                block_ws.append(torch.cat([w, w_img], 1))
            else:
                block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
            w_idx += block.num_conv
        return block_ws

    def forward_network(self, blocks, block_ws, x, img, target_res, alpha, skip_up=False, **block_kwargs):
        imgs = []
        for index_l, (res, cur_ws) in enumerate(zip(self.block_resolutions, block_ws)):
            if res > target_res:
                break

            block  = blocks[index_l]
            block_noise = block_kwargs['voxel_noise'][index_l] if "voxel_noise" in block_kwargs else None
            x, img  = block(
                x, 
                img if not self.no_residual_img else None, 
                cur_ws,
                block_noise=block_noise,
                skip_up=skip_up,
                **block_kwargs)

            imgs += [img]
        return imgs


@persistence.persistent_class
class NeRFInput(Upsampler):
    """ Instead of positional encoding, it learns additional features for each points.
        However, it is important to normalize the input points 
    """
    output_mode  = 'none'
    input_mode   = 'random'  # coordinates

    architecture = 'skip'

    # only useful for triplane/volume inputs
    in_res       = 4
    out_res      = 256
    out_dim      = 32
    sigma_dim    = 8
    split_size   = 64

    # only useful for hashtable inputs
    hash_n_min   = 16
    hash_n_max   = 512
    hash_size    = 16
    hash_level   = 16
    hash_dim_in  = 32
    hash_dim_mid = None
    hash_dim_out = 2
    hash_n_layer = 4 
    hash_mode    = 'fast_hash'  # grid_hash (like volumes)

    keep_posenc  = -1
    keep_nerf_latents = False

    def build_network(self, w_dim, **block_kwargs):
        # change global settings for input field.
        kwargs_copy = copy.deepcopy(block_kwargs)
        kwargs_copy['kernel_size'] = 3
        kwargs_copy['upsample_mode'] = 'default'
        kwargs_copy['use_noise'] = True
        kwargs_copy['architecture'] = self.architecture
        self._flag = 0
        
        assert self.input_mode == 'random', \
            "currently only support normal StyleGAN2. in the future we may work on other inputs."

        # plane-based inputs with modulated 2D convolutions
        if self.output_mode   == 'tri_plane_reshape':
            self.img_channels, in_channels, const = 3 * self.out_dim, 0, None    
        elif self.output_mode == 'tri_plane_product':   #TODO: sigma_dim is for density
            self.img_channels, in_channels = 3 * (self.out_dim + self.sigma_dim), 0
            const = torch.nn.Parameter(0.1 * torch.randn([self.img_channels, self.out_res]))
        elif self.output_mode == 'multi_planes':
            self.img_channels, in_channels, const = self.out_dim * self.split_size, 0, None
            kwargs_copy['architecture'] = 'orig'

        # volume-based inputs with modulated 3D convolutions
        elif self.output_mode == '3d_volume':  # use 3D convolution to generate
            kwargs_copy['architecture'] = 'orig'
            kwargs_copy['mode'] = '3d'
            self.img_channels, in_channels, const = self.out_dim, 0, None        
        elif self.output_mode == 'ms_volume':  # multi-resolution voulume, between hashtable and volumes
            kwargs_copy['architecture'] = 'orig'
            kwargs_copy['mode'] = '3d'
            self.img_channels, in_channels, const = self.out_dim, 0, None

        # embedding-based inputs with modulated MLPs
        elif self.output_mode == 'hash_table':
            if self.hash_mode == 'grid_hash':
                assert self.hash_size % 3 == 0, "needs to be 3D"
            kwargs_copy['hash_size'], self._flag = 2 ** self.hash_size, 1
            assert self.hash_dim_out * self.hash_level == self.out_dim, "size must matched"
            return self.build_modulated_embedding(w_dim, **kwargs_copy)
        
        elif self.output_mode == 'ms_nerf_hash':
            self.hash_mode, self._flag = 'grid_hash', 2
            ms_nerf = NeRFBlock({
                'rgb_out_dim': self.hash_dim_out * self.hash_level,  # HACK
                'magnitude_ema_beta': block_kwargs['magnitude_ema_beta'],
                'no_sigma': True, 'predict_rgb': False, 'add_rgb': False,
                'n_freq_posenc': 5,
            })
            self.num_ws = ms_nerf.num_ws
            return [{'block': ms_nerf, 'num_ws': ms_nerf.num_ws, 'name': 'ms_nerf'}]
            
        else:
            raise NotImplementedError

        networks = super().build_network(w_dim, in_channels, **kwargs_copy)
        if const is not None:
            networks.append({'block': const, 'num_ws': 0, 'name': 'const'})
        return networks

    def forward_ws_split(self, ws, blocks):
        if self._flag == 1:
            return ws.split(1, dim=1)[:len(blocks)-1]
        elif self._flag == 0:
            return super().forward_ws_split(ws, blocks)
        else:
            return ws  # do not split

    def forward_network(self, blocks, block_ws, batch_size, **block_kwargs):
        x, img, out = None, None, None
        def _forward_conv_networks(x, img, blocks, block_ws):
            for index_l, (res, cur_ws) in enumerate(zip(self.block_resolutions, block_ws)):
                x, img  = blocks[index_l](x, img, cur_ws, **block_kwargs)
            return img

        def _forward_ffn_networks(x, blocks, block_ws):  
            #TODO: FFN is implemented as 1x1 conv for now #
            h, w = dividable(x.size(0))
            x = repeat(x, 'n d -> b n d', b=batch_size)
            x = rearrange(x, 'b (h w) d -> b d h w', h=h, w=w)
            for index_l, cur_ws in enumerate(block_ws):
                block, cur_ws = blocks[index_l], cur_ws[:, 0]
                x = block(x, cur_ws)
            return x

        # tri-plane outputs
        if 'tri_plane' in self.output_mode:
            img = _forward_conv_networks(x, img, blocks, block_ws)
            if self.output_mode == 'tri_plane_reshape':
                out = ('tri_plane', rearrange(img, 'b (s c) h w -> b s c h w', s=3))
            elif self.output_mode == 'tri_plane_product':
                out = ('tri_plane', rearrange(img, 'b (s c) h w -> b s c h w', s=3), 
                       'tri_vector', repeat(rearrange(blocks[-1], '(s c) d -> s c d', s=3), 's c d -> b s c d', b=img.size(0)))
            else:
                raise NotImplementedError("remove support for other types of tri-plane implementation.")
            
        # volume/3d voxel outputs
        elif self.output_mode == 'multi_planes':
            img = _forward_conv_networks(x, img, blocks, block_ws)
            out = ('volume', rearrange(img, 'b (s c) h w -> b s c h w', s=self.out_dim))
        elif self.output_mode == '3d_volume':
            img = _forward_conv_networks(x, img, blocks, block_ws)
            out = ('volume', img)

        # multi-resolution 3d volume outputs (similar to hash-table)
        elif self.output_mode == 'ms_volume':
            img = _forward_conv_networks(x, img, blocks, block_ws)
            out = ('ms_volume', rearrange(img, 'b (l m) d h w -> b l m d h w', l=self.hash_level))
            
        # hash-table outputs (need hash sample implemented #TODO#
        elif self.output_mode == 'hash_table':
            x, blocks = blocks[-1], blocks[:-1]
            if len(blocks) > 0:
                x = _forward_ffn_networks(x, blocks, block_ws)
                out = ('hash_table', rearrange(x, 'b d h w -> b (h w) d'))
            else:
                out = ('hash_table', repeat(x, 'n d -> b n d', b=batch_size))
        elif self.output_mode == 'ms_nerf_hash':
            # prepare inputs for nerf
            x = torch.linspace(-1, 1, steps=self.out_res, device=block_ws.device)
            x = torch.stack(torch.meshgrid(x,x,x), -1).reshape(-1, 3)
            x = repeat(x, 'n s -> b n s', b=block_ws.size(0))
            x = blocks[0](x, None, ws=block_ws, shape=[block_ws.size(0), 32, 32, 32])[0]
            x = rearrange(x, 'b (d h w) (l m) -> b l m d h w', l=self.hash_level, d=32, h=32, w=32)
            out = ('ms_volume', x)
            
        else:
            raise NotImplementedError

        return out

    def query_input_features(self, p_i, input_feats, p_shape, bound, grad_inputs=False):
        batch_size, height, width, n_steps = p_shape        
        p_i = p_i / bound
        
        if input_feats[0] == 'tri_plane':
            # TODO!! Our world space, x->depth, y->width, z->height
            lh, lw = dividable(n_steps)
            p_ds = rearrange(p_i, 'b (h w l m) d -> b (l h) (m w) d',
                b=batch_size, h=height, w=width, l=lh, m=lw).split(1, dim=-1)
            px, py, pz = p_ds[0], p_ds[1], p_ds[2]
                
            # project points onto three planes
            p_xy = torch.cat([px, py], -1)
            p_xz = torch.cat([px, pz], -1)
            p_yz = torch.cat([py, pz], -1)
            p_gs = torch.cat([p_xy, p_xz, p_yz], 0)
            f_in = torch.cat([input_feats[1][:, i] for i in range(3)], 0)
            p_f  = grid_sample(f_in, p_gs)  # gradient-fix bilinear interpolation
            p_f  = [p_f[i * batch_size: (i+1) * batch_size] for i in range(3)]
            
            # project points to three vectors (optional)
            if len(input_feats) == 4 and input_feats[2] == 'tri_vector':
                # TODO: PyTorch did not support grid_sample for 1D data. Maybe need custom code.
                p_gs_vec = torch.cat([pz, py, px], 0)
                f_in_vec = torch.cat([input_feats[3][:, i] for i in range(3)], 0)
                p_f_vec  = grid_sample(f_in_vec.unsqueeze(-1), torch.cat([torch.zeros_like(p_gs_vec), p_gs_vec], -1))
                p_f_vec  = [p_f_vec[i * batch_size: (i+1) * batch_size] for i in range(3)]
                
                # multiply on the triplane features
                p_f = [m * v for m, v in zip(p_f, p_f_vec)]
                
            p_f  = sum(p_f)
            p_f  = rearrange(p_f, 'b d (l h) (m w) -> b (h w l m) d', l=lh, m=lw)
            
        elif input_feats[0] == 'volume':
            # TODO!! Our world space, x->depth, y->width, z->height
            # (width-c, height-c, depth-c), volume (B x N x D x H x W)
            p_ds  = rearrange(p_i, 'b (h w s) d -> b s h w d',
                b=batch_size, h=height, w=width, s=n_steps).split(1, dim=-1)
            px, py, pz = p_ds[0], p_ds[1], p_ds[2]
            p_yzx = torch.cat([py, -pz, px], -1)
            p_f   = F.grid_sample(input_feats[1], p_yzx, mode='bilinear', align_corners=False)
            p_f   = rearrange(p_f, 'b c s h w -> b (h w s) c')

        elif input_feats[0] == 'ms_volume':
            # TODO!! Multi-resolution volumes (experimental)
            # for smoothness, maybe we should expand the volume? (TODO)
            # print(p_i.shape)
            ms_v = input_feats[1].new_zeros(
                batch_size, self.hash_level, self.hash_dim_out, self.out_res+1, self.out_res+1, self.out_res+1)
            ms_v[..., 1:, 1:, 1:] = input_feats[1].flip([3,4,5])
            ms_v[..., :self.out_res, :self.out_res, :self.out_res] = input_feats[1]
            v_size = ms_v.size(-1)

            # multi-resolutions
            b = math.exp((math.log(self.hash_n_max) - math.log(self.hash_n_min))/(self.hash_level-1))
            hash_res_ls = [round(self.hash_n_min * b ** l) for l in range(self.hash_level)]

            # prepare interpolate grids
            p_ds = rearrange(p_i, 'b (h w s) d -> b s h w d',
                b=batch_size, h=height, w=width, s=n_steps).split(1, dim=-1)
            px, py, pz = p_ds[0], p_ds[1], p_ds[2]
            p_yzx = torch.cat([py, -pz, px], -1)
            p_yzx = ((p_yzx + 1) / 2).clamp(min=0, max=1)     # normalize to 0~1 (just for safe)
            p_yzx = torch.stack([p_yzx if n < v_size else torch.fmod(p_yzx * n, v_size) / v_size for n in hash_res_ls], 1)
            p_yzx = (p_yzx * 2 - 1).view(-1, n_steps, height, width, 3)
            
            ms_v  = ms_v.view(-1, self.hash_dim_out, v_size, v_size, v_size)  # back to -1~1
            p_f   = F.grid_sample(ms_v, p_yzx, mode='bilinear', align_corners=False)
            p_f   = rearrange(p_f, '(b l) c s h w -> b (h w s) (l c)', l=self.hash_level)
        
        elif input_feats[0] == 'hash_table':
            # TODO:!! Experimental code trying to learn hashtable used in (maybe buggy)
            # https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf
            
            p_xyz = ((p_i + 1) / 2).clamp(min=0, max=1)  # normalize to 0~1
            p_f = hash_sample(
                p_xyz, input_feats[1], self.offsets.to(p_xyz.device), 
                self.beta, self.hash_n_min, grad_inputs, mode=self.hash_mode)

        else:
            raise NotImplementedError

        if self.keep_posenc > -1:
            if self.keep_posenc > 0:
                p_f = torch.cat([p_f, positional_encoding(p_i, self.keep_posenc, use_pos=True)], -1)
            else:
                p_f = torch.cat([p_f, p_i], -1)
            
        return p_f

    def build_hashtable_info(self, hash_size):
        self.beta = math.exp((math.log(self.hash_n_max) - math.log(self.hash_n_min)) / (self.hash_level-1))
        self.hash_res_ls = [round(self.hash_n_min * self.beta ** l) for l in range(self.hash_level)]
        offsets, offset = [], 0
        for i in range(self.hash_level):
            resolution = self.hash_res_ls[i]
            params_in_level = min(hash_size, (resolution + 1) ** 3)
            offsets.append(offset)
            offset += params_in_level
        offsets.append(offset)
        self.offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
        return offset

    def build_modulated_embedding(self, w_dim, hash_size, **block_kwargs):
        # allocate parameters
        offset = self.build_hashtable_info(hash_size)
        hash_const = torch.nn.Parameter(torch.zeros(
            [offset, self.hash_dim_in if self.hash_n_layer > -1 else self.hash_dim_out]))
        hash_const.data.uniform_(-1e-4, 1e-4)

        hash_networks = []
        if self.hash_n_layer > -1:
            input_dim     = self.hash_dim_in
            for l in range(self.hash_n_layer):
                output_dim = self.hash_dim_mid if self.hash_dim_mid is not None else self.hash_dim_in
                hash_networks.append({
                    'block': Style2Layer(input_dim, output_dim, w_dim),
                    'num_ws': 1, 'name': f'hmlp{l}'
                })
                input_dim  = output_dim 
            hash_networks.append({
                'block': ToRGBLayer(input_dim, self.hash_dim_out, w_dim, kernel_size=1),
                'num_ws': 1, 'name': 'hmlpout'})
        hash_networks.append({'block': hash_const, 'num_ws': 0, 'name': 'hash_const'})
        self.num_ws = sum([h['num_ws'] for h in hash_networks])
        return hash_networks
        

@persistence.persistent_class
class NeRFSynthesisNetwork(torch.nn.Module):
    def __init__(self,
        w_dim,                        # Intermediate latent (W) dimensionality.
        img_resolution,               # Output image resolution.
        img_channels,                 # Number of color channels.
        channel_base      = 1,
        channel_max       = 1024,

        # module settings
        camera_kwargs     = {},
        renderer_kwargs   = {},
        upsampler_kwargs  = {},
        input_kwargs      = {},
        foreground_kwargs = {},
        background_kwargs = {},

        # nerf space settings
        z_dim             = 256,
        z_dim_bg          = 128,
        rgb_out_dim       = 256,
        rgb_out_dim_bg    = None,
        resolution_vol    = 32,
        resolution_start  = None,
        progressive       = True,
        prog_nerf_only    = False,
        interp_steps      = None,   # (optional) "start_step:final_step"

        # others (regularization)
        regularization    = [],     # nv_beta, nv_vol 
        predict_camera    = False,
        camera_condition  = None,
        n_reg_samples     = 0,
        reg_full          = False,
        
        cam_based_sampler = False,
        rectangular       = None,
        freeze_nerf       = False,
        **block_kwargs,            # Other arguments for SynthesisBlock.
    ):
        assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
        super().__init__()

        # dimensions
        self.w_dim            = w_dim
        self.z_dim            = z_dim
        self.z_dim_bg         = z_dim_bg
        self.num_ws           = 0
        self.rgb_out_dim      = rgb_out_dim
        self.rgb_out_dim_bg   = rgb_out_dim_bg if rgb_out_dim_bg is not None else rgb_out_dim

        self.img_resolution   = img_resolution
        self.resolution_vol   = resolution_vol if resolution_vol < img_resolution else img_resolution
        self.resolution_start = resolution_start if resolution_start is not None else resolution_vol
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels     = img_channels
        
        # number of samples
        self.n_reg_samples = n_reg_samples
        self.reg_full = reg_full
        self.use_noise = block_kwargs.get('use_noise', False)
        
        # ---------------------------------- Initialize Modules ---------------------------------------- -#
        # camera module
        self.C = CameraRay(camera_kwargs, **block_kwargs)
        
        # input encoding module
        if (len(input_kwargs) > 0) and (input_kwargs['output_mode'] != 'none'):  # using synthezied inputs
            input_kwargs['channel_base'] = input_kwargs.get('channel_base', channel_base)
            input_kwargs['channel_max']  = input_kwargs.get('channel_max', channel_max)
            self.I = NeRFInput(input_kwargs, **block_kwargs)
        else:
            self.I = None

        # volume renderer module
        self.V = VolumeRenderer(renderer_kwargs, camera_ray=self.C, input_encoding=self.I, **block_kwargs)

        # upsampler module
        upsampler_kwargs.update(dict(
            img_channels=img_channels,
            in_res=resolution_vol, 
            out_res=img_resolution, 
            channel_max=channel_max, 
            channel_base=channel_base))
        self.U = Upsampler(upsampler_kwargs, **block_kwargs)

        # full model resolutions
        self.block_resolutions = copy.deepcopy(self.U.block_resolutions)
        if self.resolution_start < self.resolution_vol:
            r = self.resolution_vol
            while r > self.resolution_start:
                self.block_resolutions.insert(0, r)
                r = r // 2

        self.predict_camera = predict_camera
        if predict_camera:  # encoder side camera predictor (not very useful)
            self.camera_generator = CameraGenerator()
        self.camera_condition = camera_condition
        if self.camera_condition is not None:   # style vector modulated by the camera poses (uv)
            self.camera_map = MappingNetwork(z_dim=0, c_dim=16, w_dim=self.w_dim, num_ws=None, w_avg_beta=None, num_layers=2)
            
        # ray level choices
        self.regularization   = regularization
        self.margin           = block_kwargs.get('margin', 0)
        self.activation       = block_kwargs.get('activation', 'lrelu')
        self.rectangular_crop = rectangular  # [384, 512] ??
    
        # nerf (foregournd/background)
        foreground_kwargs.update(dict(
            z_dim=self.z_dim, 
            w_dim=w_dim, 
            rgb_out_dim=self.rgb_out_dim,
            activation=self.activation))

        # disable positional encoding if input encoding is given
        if self.I is not None:  
            foreground_kwargs.update(dict(
                disable_latents=(not self.I.keep_nerf_latents), 
                input_dim=self.I.out_dim + 3 * (2 * self.I.keep_posenc + 1) 
                    if self.I.keep_posenc > -1 else self.I.out_dim,
                positional_encoding='none'))
        
        self.fg_nerf = NeRFBlock(foreground_kwargs)
        self.num_ws += self.fg_nerf.num_ws

        if not self.V.no_background:
            background_kwargs.update(dict(
                z_dim=self.z_dim_bg, w_dim=w_dim, 
                rgb_out_dim=self.rgb_out_dim_bg,
                activation=self.activation))
            self.bg_nerf = NeRFBlock(background_kwargs)
            self.num_ws += self.bg_nerf.num_ws
        else:
            self.bg_nerf = None
        
        # ---------------------------------- Build Networks ---------------------------------------- -#
        # input encoding (optional)
        if self.I is not None:
            assert self.V.no_background, "does not support background field"
            nerf_inputs = self.I.build_network(w_dim, **block_kwargs)
            self.input_block_names = ['in_' + i['name'] for i in nerf_inputs]
            self.num_ws += sum([i['num_ws'] for i in nerf_inputs])
            for i in nerf_inputs:
                setattr(self, 'in_' + i['name'], i['block'])
                
        # upsampler
        upsamplers = self.U.build_network(w_dim, self.fg_nerf.rgb_out_dim, **block_kwargs)
        if len(upsamplers) > 0:
            self.block_names = [u['name'] for u in upsamplers]
            self.num_ws += sum([u['num_ws'] for u in upsamplers])
            for u in upsamplers:
                setattr(self, u['name'], u['block'])

        # data-sampler
        if cam_based_sampler:
            self.sampler = (CameraQueriedSampler, {'camera_module': self.C})
            
        # other hyperameters
        self.progressive_growing   = progressive
        self.progressive_nerf_only = prog_nerf_only
        assert not (self.progressive_growing and self.progressive_nerf_only)
        if prog_nerf_only:
            assert (self.n_reg_samples == 0) and (not reg_full), "does not support regularization"

        self.register_buffer("alpha", torch.scalar_tensor(-1))
        if predict_camera:
            self.num_ws += 1  # additional w for camera
        self.freeze_nerf = freeze_nerf
        self.steps = None
        self.interp_steps = [int(a) for a in interp_steps.split(':')] \
            if interp_steps is not None else None  #TODO two-stage training trick (from EG3d paper, not working so far)

    def set_alpha(self, alpha):
        if alpha is not None:
            self.alpha.fill_(alpha)

    def set_steps(self, steps):
        if hasattr(self, "steps"):
            if self.steps is not None:
                self.steps = self.steps * 0 + steps / 1000.0
            else:
                self.steps = steps / 1000.0

    def forward(self, ws, **block_kwargs):
        block_ws, imgs, rand_imgs = [], [], []
        batch_size = block_kwargs['batch_size'] = ws.size(0)
        n_levels, end_l, _, target_res = self.get_current_resolution()
        
        # save ws for potential usage.
        block_kwargs['ws_detach'] = ws.detach()

        # cameras, background codes
        if self.camera_condition is not None:
            cam_cond = self.get_camera_samples(batch_size, ws, block_kwargs, gen_cond=True)
        
        if "camera_matrices" not in block_kwargs:
            block_kwargs['camera_matrices'] = self.get_camera_samples(batch_size, ws, block_kwargs)
        if (self.camera_condition is not None) and (cam_cond is None):
            cam_cond = block_kwargs['camera_matrices']
           
        block_kwargs['theta'] = self.C.get_roll(ws, self.training, **block_kwargs)
        
        # get latent codes instead of style vectors (used in GRAF & GIRAFFE)
        if "latent_codes" not in block_kwargs:
            block_kwargs["latent_codes"] = self.get_latent_codes(batch_size, device=ws.device)
    
        if (self.camera_condition is not None) and (self.camera_condition == 'full'):
            cam_cond = normalize_2nd_moment(self.camera_map(None, cam_cond[1].reshape(-1, 16)))
            ws = ws * cam_cond[:, None, :]     
    
        # generate features for input points (Optional, default not use)
        with torch.autograd.profiler.record_function('nerf_input_feats'):
            if self.I is not None:
                ws = ws.to(torch.float32)
                blocks   = [getattr(self, name) for name in self.input_block_names]
                block_ws = self.I.forward_ws_split(ws, blocks)
                nerf_input_feats = self.I.forward_network(blocks, block_ws, **block_kwargs)
                ws = ws[:, self.I.num_ws:]
            else:
                nerf_input_feats = None

        # prepare for NeRF part
        with torch.autograd.profiler.record_function('prepare_nerf_path'):
            if self.progressive_nerf_only and (self.alpha > -1):
                cur_resolution = int(self.resolution_start * (1 - self.alpha) + self.resolution_vol * self.alpha)
            elif (end_l == 0) or len(self.block_resolutions) == 0:
                cur_resolution = self.resolution_start
            else:
                cur_resolution = self.block_resolutions[end_l-1]

            vol_resolution  = self.resolution_vol if self.resolution_vol < cur_resolution else cur_resolution
            nerf_resolution = vol_resolution
            if (self.interp_steps is not None) and (self.steps is not None) and (self.alpha > 0):  # interpolation trick (maybe work??)
                if self.steps < self.interp_steps[0]:
                    nerf_resolution = vol_resolution // 2
                elif self.steps < self.interp_steps[1]:
                    nerf_resolution = (self.steps - self.interp_steps[0]) / (self.interp_steps[1] - self.interp_steps[0])
                    nerf_resolution = int(nerf_resolution * (vol_resolution / 2) + vol_resolution / 2)
            
            vol_pixels, tgt_pixels = self.C.prepare_pixels(self.img_resolution, cur_resolution, nerf_resolution, **block_kwargs)
            if (end_l > 0) and (self.n_reg_samples > 0) and self.training:
                rand_pixels, rand_indexs = self.C.prepare_pixels_regularization(tgt_pixels, self.n_reg_samples)
            else:
                rand_pixels, rand_indexs = None, None
                
            if self.fg_nerf.num_ws > 0:  # use style vector instead of latent codes?
                block_kwargs["styles"] = ws[:, :self.fg_nerf.num_ws]
                ws = ws[:, self.fg_nerf.num_ws:]
            if (self.bg_nerf is not None) and self.bg_nerf.num_ws > 0:
                block_kwargs["styles_bg"] = ws[:, :self.bg_nerf.num_ws]
                ws = ws[:, self.bg_nerf.num_ws:]
        
        # volume rendering
        with torch.autograd.profiler.record_function('nerf'):
            if (rand_pixels is not None) and self.training:
                vol_pixels = (vol_pixels, rand_pixels)
            outputs = self.V.forward_volume_rendering(
                nerf_modules=(self.fg_nerf, self.bg_nerf),
                vol_pixels=vol_pixels, 
                nerf_input_feats=nerf_input_feats,
                return_full=self.reg_full,
                alpha=self.alpha,
                **block_kwargs)
            
            reg_loss = outputs.get('reg_loss', {})
            x, img, _ = self.V.post_process_outputs(outputs['full_out'], self.freeze_nerf)
            if nerf_resolution < vol_resolution:
                x   = F.interpolate(x,   vol_resolution, mode='bilinear', align_corners=False)
                img = F.interpolate(img, vol_resolution, mode='bilinear', align_corners=False)
            
            # early output from the network (used for visualization)
            if 'meshes' in block_kwargs:
                from dnnlib.geometry import render_mesh
                block_kwargs['voxel_noise'] = render_mesh(block_kwargs['meshes'], block_kwargs["camera_matrices"])
            
            if (len(self.U.block_resolutions) == 0) or \
                (x is None) or \
                (block_kwargs.get("render_option", None) is not None and 
                    'early' in block_kwargs['render_option']):
                if 'value' in block_kwargs['render_option']:
                    img = x[:,:3]
                    img = img / img.norm(dim=1, keepdim=True)
                assert img is not None, "need to add RGB"
                return img

            if 'rand_out' in outputs:
                x_rand, img_rand, rand_probs = self.V.post_process_outputs(outputs['rand_out'], self.freeze_nerf)
                lh, lw  = dividable(rand_probs.size(1))
                rand_imgs += [img_rand]

            # append low-resolution image
            if img is not None:
                if self.progressive_nerf_only and (img.size(-1) < self.resolution_vol):
                    x   = upsample(x,   self.resolution_vol)
                    img = upsample(img, self.resolution_vol)
                block_kwargs['img_nerf'] = img

        # Use 2D upsampler
        if (cur_resolution > self.resolution_vol) or self.progressive_nerf_only:
            imgs += [img]
            if (self.camera_condition is not None) and (self.camera_condition != 'full'):
                cam_cond = normalize_2nd_moment(self.camera_map(None, cam_cond[1].reshape(-1, 16)))
                ws = ws * cam_cond[:, None, :] 
            
            # 2D feature map upsampling
            with torch.autograd.profiler.record_function('upsampling'):
                ws       = ws.to(torch.float32)
                blocks   = [getattr(self, name) for name in self.block_names]
                block_ws = self.U.forward_ws_split(ws, blocks)               
                imgs    += self.U.forward_network(blocks, block_ws, x, img, target_res, self.alpha, **block_kwargs)
                img      = imgs[-1]
                if len(rand_imgs) > 0:   # nerf path regularization
                    rand_imgs += self.U.forward_network(
                        blocks, block_ws, x_rand, img_rand, target_res, self.alpha, skip_up=True, **block_kwargs)
                    img_rand = rand_imgs[-1]
            
            with torch.autograd.profiler.record_function('rgb_interp'):
                if (self.alpha > -1) and (not self.progressive_nerf_only) and self.progressive_growing:
                    if (self.alpha < 1) and (self.alpha > 0):     
                        alpha, _ = math.modf(self.alpha * n_levels)
                        img_nerf = imgs[-2]
                        if img_nerf.size(-1) < img.size(-1):  # need upsample image
                            img_nerf = upsample(img_nerf, 2 * img_nerf.size(-1))
                        img = img_nerf * (1 - alpha) + img * alpha
                        if len(rand_imgs) > 0:
                            img_rand = rand_imgs[-2] * (1 - alpha) + img_rand * alpha

            with torch.autograd.profiler.record_function('nerf_path_reg_loss'):
                if len(rand_imgs) > 0: # and self.training:  # random pixel regularization??            
                    assert self.progressive_growing
                    if self.reg_full:     # aggregate RGB in the end.
                        lh, lw = img_rand.size(2) // self.n_reg_samples, img_rand.size(3) // self.n_reg_samples
                        img_rand = rearrange(img_rand, 'b d (l h) (m w) -> b d (l m) h w', l=lh, m=lw)
                        img_rand = (img_rand * rand_probs[:, None]).sum(2)
                        if self.V.white_background:
                            img_rand = img_rand + (1 - rand_probs.sum(1, keepdim=True))
                    rand_indexs = repeat(rand_indexs, 'b n -> b d n', d=img_rand.size(1))
                    img_ff = rearrange(rearrange(img, 'b d l h -> b d (l h)').gather(2, rand_indexs), 'b d (l h) -> b d l h', l=self.n_reg_samples)
                
                    def l2(img_ff, img_nf):
                        batch_size = img_nf.size(0)
                        return ((img_ff - img_nf) ** 2).sum(1).reshape(batch_size, -1).mean(-1, keepdim=True)
                    
                    reg_loss['reg_loss'] = l2(img_ff, img_rand) * 2.0

        if len(reg_loss) > 0:
            for key in reg_loss:
                block_kwargs[key] = reg_loss[key]
        
        if self.rectangular_crop is not None:   # in case rectangular 
            h, w = self.rectangular_crop
            c = int(img.size(-1) * (1 - h / w) / 2)
            mask = torch.ones_like(img)
            mask[:, :, c:-c, :] = 0
            img = img.masked_fill(mask > 0, -1)

        block_kwargs['img'] = img
        return block_kwargs

    def get_current_resolution(self):
        n_levels = len(self.block_resolutions)
        if not self.progressive_growing:
            end_l = n_levels
        elif (self.alpha > -1) and (not self.progressive_nerf_only):
            if self.alpha == 0:
                end_l = 0
            elif self.alpha == 1:
                end_l = n_levels
            elif self.alpha < 1:
                end_l = int(math.modf(self.alpha * n_levels)[1] + 1)
        else:
            end_l = n_levels
        target_res = self.resolution_start if end_l <= 0 else self.block_resolutions[end_l-1]
        before_res = self.resolution_start if end_l <= 1 else self.block_resolutions[end_l-2]
        return n_levels, end_l, before_res, target_res

    def get_latent_codes(self, batch_size=32, device="cpu", tmp=1.):
        z_dim, z_dim_bg = self.z_dim, self.z_dim_bg

        def sample_z(*size):
            torch.randn(*size).to(device)
            return torch.randn(*size).to(device) * tmp

        z_shape_obj = sample_z(batch_size, z_dim)
        z_app_obj = sample_z(batch_size, z_dim)
        z_shape_bg = sample_z(batch_size, z_dim_bg) if not self.V.no_background else None
        z_app_bg = sample_z(batch_size, z_dim_bg) if not self.V.no_background else None
        return z_shape_obj, z_app_obj, z_shape_bg, z_app_bg

    def get_camera(self, *args, **kwargs):   # for compitability
        return self.C.get_camera(*args, **kwargs)
    
    def get_camera_samples(self, batch_size, ws, block_kwargs, gen_cond=False):
        if gen_cond:  # camera condition for generator (? a special variant)
            if ('camera_matrices' in block_kwargs) and (not self.training):  # this is for rendering
                camera_matrices = self.get_camera(batch_size, device=ws.device, mode=[0.5, 0.5, 0.5])
            elif self.training and (np.random.rand() > 0.5):
                camera_matrices = self.get_camera(batch_size, device=ws.device)
            else:
                camera_matrices = None
        
        elif 'camera_mode' in block_kwargs:
            camera_matrices = self.get_camera(batch_size, device=ws.device, mode=block_kwargs["camera_mode"])    
        
        else:
            if self.predict_camera:
                rand_mode = ws.new_zeros(ws.size(0), 2)
                if self.C.gaussian_camera:
                    rand_mode = rand_mode.normal_()
                    pred_mode = self.camera_generator(rand_mode)
                else:
                    rand_mode = rand_mode.uniform_()
                    pred_mode = self.camera_generator(rand_mode - 0.5)
                mode = rand_mode if self.alpha <= 0 else rand_mode + pred_mode * 0.1
                camera_matrices = self.get_camera(batch_size, device=ws.device, mode=mode)
            
            else:   
                camera_matrices = self.get_camera(batch_size, device=ws.device)
        
        if ('camera_RT' in block_kwargs) or ('camera_UV' in block_kwargs):
            camera_matrices = list(camera_matrices)
            camera_mask = torch.rand(batch_size).type_as(camera_matrices[1]).lt(self.alpha)
            if 'camera_RT' in block_kwargs:
                image_RT = block_kwargs['camera_RT'].reshape(-1, 4, 4)
                camera_matrices[1][camera_mask] = image_RT[camera_mask]  # replacing with inferred cameras
            else:  # sample uv instead of sampling the extrinsic matrix
                image_UV = block_kwargs['camera_UV']
                image_RT = self.get_camera(batch_size, device=ws.device, mode=image_UV, force_uniform=True)[1]           
                camera_matrices[1][camera_mask] = image_RT[camera_mask]  # replacing with inferred cameras
                camera_matrices[2][camera_mask] = image_UV[camera_mask]  # replacing with inferred uvs
            camera_matrices = tuple(camera_matrices)
        return camera_matrices


@persistence.persistent_class
class Discriminator(torch.nn.Module):
    def __init__(self,
        c_dim,                          # Conditioning label (C) dimensionality.
        img_resolution,                 # Input resolution.
        img_channels,                   # Number of input color channels.
        architecture        = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
        channel_base        = 1,        # Overall multiplier for the number of channels.
        channel_max         = 512,      # Maximum number of channels in any layer.
        num_fp16_res        = 0,        # Use FP16 for the N highest resolutions.
        conv_clamp          = None,     # Clamp the output of convolution layers to +-X, None = disable clamping.
        cmap_dim            = None,     # Dimensionality of mapped conditioning label, None = default.
        lowres_head         = None,     # add a low-resolution discriminator head
        dual_discriminator  = False,    # add low-resolution (NeRF) image 
        
        block_kwargs        = {},       # Arguments for DiscriminatorBlock.
        mapping_kwargs      = {},       # Arguments for MappingNetwork.
        epilogue_kwargs     = {},       # Arguments for DiscriminatorEpilogue.
        camera_kwargs       = {},       # Arguments for Camera predictor and condition (optional, refactoring)
        upsample_type       = 'default',
        
        progressive         = False,
        resize_real_early   = False,    # Peform resizing before the training loop
        enable_ema          = False,    # Additionally save an EMA checkpoint
        
        **unused
    ):
        super().__init__()
        # setup parameters
        self.img_resolution      = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels        = img_channels
        self.block_resolutions   = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
        self.architecture        = architecture
        self.lowres_head         = lowres_head

        self.dual_discriminator  = dual_discriminator
        self.upsample_type       = upsample_type
        self.progressive         = progressive
        self.resize_real_early   = resize_real_early
        self.enable_ema          = enable_ema
        
        if self.progressive:
            assert self.architecture == 'skip', "not supporting other types for now."

        channel_base = int(channel_base * 32768)
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
        
        # camera prediction module
        self.camera_kwargs = EasyDict(
            predict_camera=False, 
            predict_styles=False,
            camera_type='3d', 
            camera_encoder=True, 
            camera_encoder_progressive=False, 
            camera_disc=True)
        
        ## ------ for compitibility ------- #
        self.camera_kwargs.predict_camera = unused.get('predict_camera', False)
        self.camera_kwargs.camera_type = '9d' if unused.get('predict_9d_camera', False) else '3d'
        self.camera_kwargs.camera_disc = not unused.get('no_camera_condition', False)
        self.camera_kwargs.camera_encoder = unused.get('saperate_camera', False)
        
        self.camera_kwargs.update(camera_kwargs)
        ## ------ for compitibility ------- #
        
        self.c_dim = c_dim
        if self.camera_kwargs.predict_camera:
            if self.camera_kwargs.camera_type == '3d':
                self.c_dim = out_dim = 3     # (u, v) on the sphere
            elif self.camera_kwargs.camera_type == '9d':
                self.c_dim,  out_dim = 16, 9
            elif self.camera_kwargs.camera_type == '16d':
                self.c_dim = out_dim = 16
            else:
                raise NotImplementedError('Wrong camera type')
            if not self.camera_kwargs.camera_disc:
                self.c_dim = c_dim    
            self.projector = EqualConv2d(channels_dict[4], out_dim, 4, padding=0, bias=False)
             
        if cmap_dim is None:
            cmap_dim = channels_dict[4]
        if self.c_dim == 0:
            cmap_dim = 0
        if self.c_dim > 0:
            self.mapping = MappingNetwork(z_dim=0, c_dim=self.c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
  
        if self.camera_kwargs.predict_styles:
            self.w_dim, self.num_ws = self.camera_kwargs.w_dim, self.camera_kwargs.num_ws
            self.projector_styles = EqualConv2d(channels_dict[4], self.w_dim * self.num_ws, 4, padding=0, bias=False)
            self.mapping_styles = MappingNetwork(z_dim=0, c_dim=self.w_dim * self.num_ws, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
        
        # main discriminator blocks
        common_kwargs = dict(img_channels=self.img_channels, architecture=architecture, conv_clamp=conv_clamp)    
        
        def build_blocks(layer_name='b', low_resolution=False):
            cur_layer_idx = 0
            block_resolutions = self.block_resolutions
            if low_resolution:
                block_resolutions = [r for r in self.block_resolutions if r <= self.lowres_head]
            for res in block_resolutions:
                in_channels = channels_dict[res] if res < img_resolution else 0
                tmp_channels = channels_dict[res]
                out_channels = channels_dict[res // 2]
                use_fp16 = (res >= fp16_resolution)
                block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
                    first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
                setattr(self, f'{layer_name}{res}', block)
                cur_layer_idx += block.num_layers

        build_blocks(layer_name='b')  # main blocks
        if self.dual_discriminator:
            build_blocks(layer_name='dual', low_resolution=True)
        if self.camera_kwargs.camera_encoder:
            build_blocks(layer_name='c', low_resolution=(not self.camera_kwargs.camera_encoder_progressive))

        # final output module
        self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
        self.register_buffer("alpha", torch.scalar_tensor(-1))

    def set_alpha(self, alpha):
        if alpha is not None:
            self.alpha = self.alpha * 0 + alpha
    
    def set_resolution(self, res):
        self.curr_status = res
        
    def forward_blocks_progressive(self, img, mode="disc", **block_kwargs):
        # mode from ['disc', 'dual_disc', 'cam_enc']
        if isinstance(img, dict):
            img = img['img']
        
        block_resolutions, alpha, lowres_head = self.get_block_resolutions(img)
        layer_name, progressive = 'b', self.progressive
        if mode == "cam_enc":        
            assert self.camera_kwargs.predict_camera and self.camera_kwargs.camera_encoder
            layer_name = 'c'
            if not self.camera_kwargs.camera_encoder_progressive:
                block_resolutions, progressive = [r for r in self.block_resolutions if r <= self.lowres_head], False
                img = downsample(img, self.lowres_head)
        elif mode == 'dual_disc':
            layer_name = 'dual'
            block_resolutions, progressive = [r for r in self.block_resolutions if r <= self.lowres_head], False
         
        img0 = downsample(img, img.size(-1) // 2) if \
            progressive and (self.lowres_head is not None) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0) \
            else None            
        x = None if (not progressive) or (block_resolutions[0] == self.img_resolution) \
            else getattr(self, f'{layer_name}{block_resolutions[0]}').fromrgb(img)
        
        for res in block_resolutions:
            block = getattr(self, f'{layer_name}{res}')
            if (lowres_head == res) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0):
                if progressive:
                    if self.architecture == 'skip':
                        img = img * alpha + img0 * (1 - alpha)        
                    x = x * alpha + block.fromrgb(img0) * (1 - alpha)
            x, img = block(x, img, **block_kwargs)
        
        output = {}
        if (mode == 'cam_enc') or \
           (mode == 'disc' and self.camera_kwargs.predict_camera and (not self.camera_kwargs.camera_encoder)):
            c = self.projector(x)[:,:,0,0]
            if self.camera_kwargs.camera_type == '9d':
                c = camera_9d_to_16d(c)    
            output['cam'] = c
            if self.camera_kwargs.predict_styles:
                w = self.projector_styles(x)[:,:,0,0]
                output['styles'] = w
        return output, x, img

    def get_camera_loss(self, RT=None, UV=None, c=None):
        if (RT is None) or (UV is None):
            return None
        if self.camera_kwargs.camera_type == '3d':  # UV has higher priority?
            return F.mse_loss(UV, c)
        else:
            return F.smooth_l1_loss(RT.reshape(RT.size(0), -1), c) * 10

    def get_styles_loss(self, WS=None, w=None):
        if WS is None:
            return None
        return F.mse_loss(WS, w) * 0.1
        
    def get_block_resolutions(self, input_img):
        block_resolutions = self.block_resolutions
        lowres_head = self.lowres_head
        alpha = self.alpha
        img_res = input_img.size(-1)
        if self.progressive and (self.lowres_head is not None) and (self.alpha > -1):
            if (self.alpha < 1) and (self.alpha > 0): 
                try:
                    n_levels, _, before_res, target_res = self.curr_status
                    alpha, index = math.modf(self.alpha * n_levels)
                    index = int(index)
                except Exception as e:  # TODO: this is a hack, better to save status as buffers.
                    before_res = target_res = img_res
                if before_res == target_res:  # no upsampling was used in generator, do not increase the discriminator
                    alpha = 0    
                block_resolutions = [res for res in self.block_resolutions if res <= target_res]
                lowres_head = before_res
            elif self.alpha == 0:
                block_resolutions = [res for res in self.block_resolutions if res <= lowres_head]
        return block_resolutions, alpha, lowres_head

    def forward(self, inputs, c=None, aug_pipe=None, return_camera=False, **block_kwargs):
        if not isinstance(inputs, dict):
            inputs = {'img': inputs}
        img = inputs['img']
        
        # this is to handle real images
        block_resolutions, alpha, _ = self.get_block_resolutions(img)
        if img.size(-1) > block_resolutions[0]:
            img = downsample(img, block_resolutions[0])
        if self.dual_discriminator and ('img_nerf' not in inputs):
            inputs['img_nerf'] = downsample(img, self.lowres_head)  
   
        RT = inputs['camera_matrices'][1].detach() if 'camera_matrices' in inputs else None
        UV = inputs['camera_matrices'][2].detach() if 'camera_matrices' in inputs else None
        WS = inputs['ws_detach'].reshape(inputs['batch_size'], -1) if 'ws_detach' in inputs else None
        
        no_condition = (c.size(-1) == 0)
        
        # forward separate camera encoder, which can also be progressive...
        if self.camera_kwargs.camera_encoder:
            out_camenc, _, _ = self.forward_blocks_progressive(img, mode='cam_enc', **block_kwargs)
            if no_condition and ('cam' in out_camenc):
                c, camera_loss = out_camenc['cam'], self.get_camera_loss(RT, UV, out_camenc['cam'])
                if 'styles' in out_camenc:
                    w, styles_loss = out_camenc['styles'], self.get_styles_loss(WS, out_camenc['styles'])
                no_condition = False
        
        # forward another dual discriminator only for low resolution images
        if self.dual_discriminator:
            _, x_nerf, img_nerf = self.forward_blocks_progressive(inputs['img_nerf'], mode='dual_disc', **block_kwargs)            

        # if applied data augmentation for discriminator
        if aug_pipe is not None:
            img = aug_pipe(img)

        # perform main discriminator block
        out_disc, x, img = self.forward_blocks_progressive(img, mode='disc', **block_kwargs)
        if no_condition and ('cam' in out_disc):
            c, camera_loss = out_disc['cam'], self.get_camera_loss(RT, UV, out_disc['cam'])
            if 'styles' in out_disc:
                w, styles_loss = out_disc['styles'], self.get_styles_loss(WS, out_disc['styles'])
            no_condition = False
        
        # camera conditional discriminator
        cmap = None
        if self.c_dim > 0:
            cc = c.clone().detach()
            cmap = self.mapping(None, cc)
            if self.camera_kwargs.predict_styles:
                ww = w.clone().detach()
                cmap = [cmap] + [self.mapping_styles(None, ww)]
                    
        logits  = self.b4(x, img, cmap)
        if self.dual_discriminator:
            logits = torch.cat([logits, self.b4(x_nerf, img_nerf, cmap)], 0)
                
        outputs = {'logits': logits}
        if self.camera_kwargs.predict_camera and (camera_loss is not None):
            outputs['camera_loss'] = camera_loss
        if self.camera_kwargs.predict_styles and (styles_loss is not None):
            outputs['styles_loss'] = styles_loss
        if return_camera:
            outputs['camera'] = c
        return outputs

      
@persistence.persistent_class
class Encoder(torch.nn.Module):
    def __init__(self,
        img_resolution,                 # Input resolution.
        img_channels,                   # Number of input color channels.
        bottleneck_factor   = 2,        # By default, the same as discriminator we use 4x4 features
        architecture        = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
        channel_base        = 1,        # Overall multiplier for the number of channels.
        channel_max         = 512,      # Maximum number of channels in any layer.
        num_fp16_res        = 0,        # Use FP16 for the N highest resolutions.
        conv_clamp          = None,     # Clamp the output of convolution layers to +-X, None = disable clamping
        lowres_head         = None,     # add a low-resolution discriminator head
        block_kwargs        = {},       # Arguments for DiscriminatorBlock.
        model_kwargs        = {},
        upsample_type       = 'default',
        progressive         = False,
        **unused
    ):
        super().__init__()
        self.img_resolution      = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels        = img_channels
        self.block_resolutions   = [2 ** i for i in range(self.img_resolution_log2, bottleneck_factor, -1)]
        self.architecture        = architecture
        self.lowres_head         = lowres_head
        self.upsample_type       = upsample_type
        self.progressive         = progressive
        self.model_kwargs        = model_kwargs
        self.output_mode         = model_kwargs.get('output_mode', 'styles')
        if self.progressive:
            assert self.architecture == 'skip', "not supporting other types for now."
        self.predict_camera      = model_kwargs.get('predict_camera', False)

        channel_base = int(channel_base * 32768)
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)        
        common_kwargs = dict(img_channels=self.img_channels, architecture=architecture, conv_clamp=conv_clamp)    
        cur_layer_idx = 0
        for res in self.block_resolutions:
            in_channels  = channels_dict[res] if res < img_resolution else 0
            tmp_channels = channels_dict[res]
            out_channels = channels_dict[res // 2]
            use_fp16 = (res >= fp16_resolution)
            block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
                first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
            setattr(self, f'b{res}', block)
            cur_layer_idx += block.num_layers

        # this is an encoder
        if self.output_mode in ['W', 'W+', 'None']:
            self.num_ws    = self.model_kwargs.get('num_ws', 0)
            self.n_latents = self.num_ws if self.output_mode == 'W+' else (0 if self.output_mode == 'None' else 1) 
            self.w_dim     = self.model_kwargs.get('w_dim', 512)
            self.add_dim   = self.model_kwargs.get('add_dim', 0) if not self.predict_camera else 9
            self.out_dim   = self.w_dim * self.n_latents + self.add_dim
            assert self.out_dim > 0, 'output dimenstion has to be larger than 0'
            assert self.block_resolutions[-1] // 2 == 4, "make sure the last resolution is 4x4"
            self.projector = EqualConv2d(channels_dict[4], self.out_dim, 4, padding=0, bias=False)
        else:
            raise NotImplementedError
        self.register_buffer("alpha", torch.scalar_tensor(-1))

    def set_alpha(self, alpha):
        if alpha is not None:
            self.alpha.fill_(alpha)
    
    def set_resolution(self, res):
        self.curr_status = res

    def get_block_resolutions(self, input_img):
        block_resolutions = self.block_resolutions
        lowres_head = self.lowres_head
        alpha = self.alpha
        img_res = input_img.size(-1)
        if self.progressive and (self.lowres_head is not None) and (self.alpha > -1):
            if (self.alpha < 1) and (self.alpha > 0): 
                try:
                    n_levels, _, before_res, target_res = self.curr_status
                    alpha, index = math.modf(self.alpha * n_levels)
                    index = int(index)
                except Exception as e:  # TODO: this is a hack, better to save status as buffers.
                    before_res = target_res = img_res 
                if before_res == target_res:
                    # no upsampling was used in generator, do not increase the discriminator
                    alpha = 0    
                block_resolutions = [res for res in self.block_resolutions if res <= target_res]
                lowres_head = before_res
            elif self.alpha == 0:
                block_resolutions = [res for res in self.block_resolutions if res <= lowres_head]
        return block_resolutions, alpha, lowres_head

    def forward(self, inputs, **block_kwargs):
        if isinstance(inputs, dict):
            img = inputs['img']
        else:
            img = inputs

        block_resolutions, alpha, lowres_head = self.get_block_resolutions(img)
        if img.size(-1) > block_resolutions[0]:
            img = downsample(img, block_resolutions[0])

        if self.progressive and (self.lowres_head is not None) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0):
            img0 = downsample(img, img.size(-1) // 2)
           
        x = None if (not self.progressive) or (block_resolutions[0] == self.img_resolution) \
            else getattr(self, f'b{block_resolutions[0]}').fromrgb(img)

        for res in block_resolutions:
            block = getattr(self, f'b{res}')
            if (lowres_head == res) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0):
                if self.architecture == 'skip':
                    img = img * alpha + img0 * (1 - alpha)
                if self.progressive:
                    x = x * alpha + block.fromrgb(img0) * (1 - alpha)      # combine from img0           
            x, img = block(x, img, **block_kwargs)
        
        outputs = {}
        if self.output_mode in ['W', 'W+', 'None']:
            out = self.projector(x)[:,:,0,0]
            if self.predict_camera:
                out, out_cam_9d = out[:, 9:], out[:, :9]
                outputs['camera'] = camera_9d_to_16d(out_cam_9d)
            
            if self.output_mode == 'W+':
                out = rearrange(out, 'b (n s) -> b n s', n=self.num_ws, s=self.w_dim)
            elif self.output_mode == 'W':
                out = repeat(out, 'b s -> b n s', n=self.num_ws)
            else:
                out = None
            outputs['ws'] = out

        return outputs
    
# ------------------------------------------------------------------------------------------- #

class CameraQueriedSampler(torch.utils.data.Sampler):
    def __init__(self, dataset, camera_module, nearest_neighbors=400, rank=0, num_replicas=1, device='cpu', seed=0):
        assert len(dataset) > 0

        super().__init__(dataset)
        self.dataset = dataset
        self.dataset_cameras = None
        self.seed = seed
        self.rank = rank
        self.device = device
        self.num_replicas = num_replicas
        self.C = camera_module
        self.K = nearest_neighbors
        self.B = 1000
        
    def update_dataset_cameras(self, estimator):
        import tqdm
        from torch_utils.distributed_utils import gather_list_and_concat
        output = torch.ones(len(self.dataset), 16).to(self.device)
        with torch.no_grad():
            predicted_cameras, image_indices, bsz = [], [], 64
            item_subset = [(i * self.num_replicas + self.rank) % len(self.dataset) for i in range((len(self.dataset) - 1) // self.num_replicas + 1)]
            for _, (images, _, indices) in tqdm.tqdm(enumerate(torch.utils.data.DataLoader(
                    dataset=copy.deepcopy(self.dataset), sampler=item_subset, batch_size=bsz)), 
                total=len(item_subset)//bsz+1, colour='red', desc=f'Estimating camera poses for the training set at'):
                predicted_cameras += [estimator(images.to(self.device).to(torch.float32) / 127.5 - 1)]
                image_indices += [indices.to(self.device).long()]
            predicted_cameras = torch.cat(predicted_cameras, 0)
            image_indices = torch.cat(image_indices, 0)
            if self.num_replicas > 1:
                predicted_cameras = gather_list_and_concat(predicted_cameras)
                image_indices = gather_list_and_concat(image_indices)
        output[image_indices] = predicted_cameras
        self.dataset_cameras = output        
                
    def get_knn_cameras(self):
        return torch.norm(
            self.dataset_cameras.unsqueeze(1) - 
            self.C.get_camera(self.B, self.device)[0].reshape(1,self.B,16), dim=2, p=None
        ).topk(self.K, largest=False, dim=0)[1]   # K x B

    def __iter__(self):
        order = np.arange(len(self.dataset))
        rnd = np.random.RandomState(self.seed+self.rank)
        while True:
            if self.dataset_cameras is None:
                rand_idx = rnd.randint(order.size)
                yield rand_idx
            else:
                knn_idxs = self.get_knn_cameras()
                for i in range(self.B):
                    rand_idx = rnd.randint(self.K)
                    yield knn_idxs[rand_idx, i].item()