Spaces:
Build error
Build error
File size: 115,251 Bytes
94ada0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from bdb import set_trace
import copy
from email import generator
import imp
import math
from platform import architecture
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad
from training.networks import *
from dnnlib.camera import *
from dnnlib.geometry import (
positional_encoding, upsample, downsample
)
from dnnlib.util import dividable, hash_func, EasyDict
from torch_utils.ops.hash_sample import hash_sample
from torch_utils.ops.grid_sample_gradfix import grid_sample
from torch_utils.ops.nerf_utils import topp_masking
from einops import repeat, rearrange
# --------------------------------- basic modules ------------------------------------------- #
@persistence.persistent_class
class Style2Layer(nn.Module):
def __init__(self,
in_channels,
out_channels,
w_dim,
activation='lrelu',
resample_filter=[1,3,3,1],
magnitude_ema_beta = -1, # -1 means not using magnitude ema
**unused_kwargs):
# simplified version of SynthesisLayer
# no noise, kernel size forced to be 1x1, used in NeRF block
super().__init__()
self.activation = activation
self.conv_clamp = None
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.padding = 0
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.w_dim = w_dim
self.in_features = in_channels
self.out_features = out_channels
memory_format = torch.contiguous_format
if w_dim > 0:
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
self.weight = torch.nn.Parameter(
torch.randn([out_channels, in_channels, 1, 1]).to(memory_format=memory_format))
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
else:
self.weight = torch.nn.Parameter(torch.Tensor(out_channels, in_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
self.weight_gain = 1.
# initialization
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
self.magnitude_ema_beta = magnitude_ema_beta
if magnitude_ema_beta > 0:
self.register_buffer('w_avg', torch.ones([]))
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, style={}'.format(
self.in_features, self.out_features, self.w_dim
)
def forward(self, x, w=None, fused_modconv=None, gain=1, up=1, **unused_kwargs):
flip_weight = True # (up == 1) # slightly faster HACK
act = self.activation
if (self.magnitude_ema_beta > 0):
if self.training: # updating EMA.
with torch.autograd.profiler.record_function('update_magnitude_ema'):
magnitude_cur = x.detach().to(torch.float32).square().mean()
self.w_avg.copy_(magnitude_cur.lerp(self.w_avg, self.magnitude_ema_beta))
input_gain = self.w_avg.rsqrt()
x = x * input_gain
if fused_modconv is None:
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
fused_modconv = not self.training
if self.w_dim > 0: # modulated convolution
assert x.ndim == 4, "currently not support modulated MLP"
styles = self.affine(w) # Batch x style_dim
if x.size(0) > styles.size(0):
styles = repeat(styles, 'b c -> (b s) c', s=x.size(0) // styles.size(0))
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=None, up=up,
padding=self.padding, resample_filter=self.resample_filter,
flip_weight=flip_weight, fused_modconv=fused_modconv)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=act, gain=act_gain, clamp=act_clamp)
else:
if x.ndim == 2: # MLP mode
x = F.relu(F.linear(x, self.weight, self.bias.to(x.dtype)))
else:
x = F.relu(F.conv2d(x, self.weight[:,:,None, None], self.bias))
# x = bias_act.bias_act(x, self.bias.to(x.dtype), act='relu')
return x
@persistence.persistent_class
class SDFDensityLaplace(nn.Module): # alpha * Laplace(loc=0, scale=beta).cdf(-sdf)
def __init__(self, params_init={}, noise_std=0.0, beta_min=0.001, exp_beta=False):
super().__init__()
self.noise_std = noise_std
for p in params_init:
param = nn.Parameter(torch.tensor(params_init[p]))
setattr(self, p, param)
self.beta_min = beta_min
self.exp_beta = exp_beta
if (exp_beta == 'upper') or exp_beta:
self.register_buffer("steps", torch.scalar_tensor(0).float())
def density_func(self, sdf, beta=None):
if beta is None:
beta = self.get_beta()
alpha = 1 / beta
return alpha * (0.5 + 0.5 * sdf.sign() * torch.expm1(-sdf.abs() / beta)) # TODO: need abs maybe, not sure
def get_beta(self):
if self.exp_beta == 'upper':
beta_upper = 0.12 * torch.exp(-0.003 * (self.steps / 1e3))
beta = min(self.beta.abs(), beta_upper) + self.beta_min
elif self.exp_beta:
if self.steps < 500000:
beta = self.beta.abs() + self.beta_min
else:
beta = self.beta.abs().detach() + self.beta_min
else:
beta = self.beta.abs() + self.beta_min
return beta
def set_steps(self, steps):
if hasattr(self, "steps"):
self.steps = self.steps * 0 + steps
# ------------------------------------------------------------------------------------------- #
@persistence.persistent_class
class NeRFBlock(nn.Module):
'''
Predicts volume density and color from 3D location, viewing
direction, and latent code z.
'''
# dimensions
input_dim = 3
w_dim = 512 # style latent
z_dim = 0 # input latent
rgb_out_dim = 128
hidden_size = 128
n_blocks = 8
img_channels = 3
magnitude_ema_beta = -1
disable_latents = False
max_batch_size = 2 ** 18
shuffle_factor = 1
implementation = 'batch_reshape' # option: [flatten_2d, batch_reshape]
# architecture settings
activation = 'lrelu'
use_skip = False
use_viewdirs = False
add_rgb = False
predict_rgb = False
inverse_sphere = False
merge_sigma_feat = False # use one MLP for sigma and features
no_sigma = False # do not predict sigma, only output features
tcnn_backend = False
use_style = None
use_normal = False
use_sdf = None
volsdf_exp_beta = False
normalized_feat = False
final_sigmoid_act = False
# positional encoding inpuut
use_pos = False
n_freq_posenc = 10
n_freq_posenc_views = 4
downscale_p_by = 1
gauss_dim_pos = 20
gauss_dim_view = 4
gauss_std = 10.
positional_encoding = "normal"
def __init__(self, nerf_kwargs):
super().__init__()
for key in nerf_kwargs:
if hasattr(self, key):
setattr(self, key, nerf_kwargs[key])
self.sdf_mode = self.use_sdf
self.use_sdf = self.use_sdf is not None
if self.use_sdf == 'volsdf':
self.density_transform = SDFDensityLaplace(
params_init={'beta': 0.1},
beta_min=0.0001,
exp_beta=self.volsdf_exp_beta)
# ----------- input module -------------------------
D = self.input_dim if not self.inverse_sphere else self.input_dim + 1
if self.positional_encoding == 'gauss':
rng = np.random.RandomState(2021)
B_pos = self.gauss_std * torch.from_numpy(rng.randn(D, self.gauss_dim_pos * D)).float()
B_view = self.gauss_std * torch.from_numpy(rng.randn(3, self.gauss_dim_view * 3)).float()
self.register_buffer("B_pos", B_pos)
self.register_buffer("B_view", B_view)
dim_embed = D * self.gauss_dim_pos * 2
dim_embed_view = 3 * self.gauss_dim_view * 2
elif self.positional_encoding == 'normal':
dim_embed = D * self.n_freq_posenc * 2
dim_embed_view = 3 * self.n_freq_posenc_views * 2
else: # not using positional encoding
dim_embed, dim_embed_view = D, 3
if self.use_pos:
dim_embed, dim_embed_view = dim_embed + D, dim_embed_view + 3
self.dim_embed = dim_embed
self.dim_embed_view = dim_embed_view
# ------------ Layers --------------------------
assert not (self.add_rgb and self.predict_rgb), "only one could be achieved"
assert not ((self.use_viewdirs or self.use_normal) and (self.merge_sigma_feat or self.no_sigma)), \
"merged MLP does not support."
if self.disable_latents:
w_dim = 0
elif self.z_dim > 0: # if input global latents, disable using style vectors
w_dim, dim_embed, dim_embed_view = 0, dim_embed + self.z_dim, dim_embed_view + self.z_dim
else:
w_dim = self.w_dim
final_in_dim = self.hidden_size
if self.use_normal:
final_in_dim += D
final_out_dim = self.rgb_out_dim * self.shuffle_factor
if self.merge_sigma_feat:
final_out_dim += self.shuffle_factor # predicting sigma
if self.add_rgb:
final_out_dim += self.img_channels
# start building the model
if self.tcnn_backend:
try:
import tinycudann as tcnn
except ImportError:
raise ImportError("This sample requires the tiny-cuda-nn extension for PyTorch.")
assert self.merge_sigma_feat and (not self.predict_rgb) and (not self.add_rgb)
assert w_dim == 0, "do not use any modulating inputs"
tcnn_config = {"otype": "FullyFusedMLP", "activation": "ReLU", "output_activation": "None", "n_neurons": 64, "n_hidden_layers": 1}
self.network = tcnn.Network(dim_embed, final_out_dim, tcnn_config)
self.num_ws = 0
else:
self.fc_in = Style2Layer(dim_embed, self.hidden_size, w_dim, activation=self.activation)
self.num_ws = 1
self.skip_layer = self.n_blocks // 2 - 1 if self.use_skip else None
if self.n_blocks > 1:
self.blocks = nn.ModuleList([
Style2Layer(
self.hidden_size if i != self.skip_layer else self.hidden_size + dim_embed,
self.hidden_size,
w_dim, activation=self.activation,
magnitude_ema_beta=self.magnitude_ema_beta)
for i in range(self.n_blocks - 1)])
self.num_ws += (self.n_blocks - 1)
if not (self.merge_sigma_feat or self.no_sigma):
self.sigma_out = ToRGBLayer(self.hidden_size, self.shuffle_factor, w_dim, kernel_size=1)
self.num_ws += 1
self.feat_out = ToRGBLayer(final_in_dim, final_out_dim, w_dim, kernel_size=1)
if (self.z_dim == 0 and (not self.disable_latents)):
self.num_ws += 1
else:
self.num_ws = 0
if self.use_viewdirs:
assert self.predict_rgb, "only works when predicting RGB"
self.from_ray = Conv2dLayer(dim_embed_view, final_out_dim, kernel_size=1, activation='linear')
if self.predict_rgb: # predict RGB over features
self.to_rgb = Conv2dLayer(final_out_dim, self.img_channels * self.shuffle_factor, kernel_size=1, activation='linear')
def set_steps(self, steps):
if hasattr(self, "steps"):
self.steps.fill_(steps)
def transform_points(self, p, views=False):
p = p / self.downscale_p_by
if self.positional_encoding == 'gauss':
B = self.B_view if views else self.B_pos
p_transformed = positional_encoding(p, B, 'gauss', self.use_pos)
elif self.positional_encoding == 'normal':
L = self.n_freq_posenc_views if views else self.n_freq_posenc
p_transformed = positional_encoding(p, L, 'normal', self.use_pos)
else:
p_transformed = p
return p_transformed
def forward(self, p_in, ray_d, z_shape=None, z_app=None, ws=None, shape=None, requires_grad=False, impl=None):
with torch.set_grad_enabled(self.training or self.use_sdf or requires_grad):
impl = 'mlp' if self.tcnn_backend else impl
option, p_in = self.forward_inputs(p_in, shape=shape, impl=impl)
if self.tcnn_backend:
with torch.cuda.amp.autocast():
p = p_in.squeeze(-1).squeeze(-1)
o = self.network(p)
sigma_raw, feat = o[:, :self.shuffle_factor], o[:, self.shuffle_factor:]
sigma_raw = rearrange(sigma_raw, '(b s) d -> b s d', s=option[2]).to(p_in.dtype)
feat = rearrange(feat, '(b s) d -> b s d', s=option[2]).to(p_in.dtype)
else:
feat, sigma_raw = self.forward_nerf(option, p_in, ray_d, ws=ws, z_shape=z_shape, z_app=z_app)
return feat, sigma_raw
def forward_inputs(self, p_in, shape=None, impl=None):
# prepare the inputs
impl = impl if impl is not None else self.implementation
if (shape is not None) and (impl == 'batch_reshape'):
height, width, n_steps = shape[1:]
elif impl == 'flatten_2d':
(height, width), n_steps = dividable(p_in.shape[1]), 1
elif impl == 'mlp':
height, width, n_steps = 1, 1, p_in.shape[1]
else:
raise NotImplementedError("looking for more efficient implementation.")
p_in = rearrange(p_in, 'b (h w s) d -> (b s) d h w', h=height, w=width, s=n_steps)
use_normal = self.use_normal or self.use_sdf
if use_normal:
p_in.requires_grad_(True)
return (height, width, n_steps, use_normal), p_in
def forward_nerf(self, option, p_in, ray_d=None, ws=None, z_shape=None, z_app=None):
height, width, n_steps, use_normal = option
# forward nerf feature networks
p = self.transform_points(p_in.permute(0,2,3,1))
if (self.z_dim > 0) and (not self.disable_latents):
assert (z_shape is not None) and (ws is None)
z_shape = repeat(z_shape, 'b c -> (b s) h w c', h=height, w=width, s=n_steps)
p = torch.cat([p, z_shape], -1)
p = p.permute(0,3,1,2) # BS x C x H x W
if height == width == 1: # MLP
p = p.squeeze(-1).squeeze(-1)
net = self.fc_in(p, ws[:, 0] if ws is not None else None)
if self.n_blocks > 1:
for idx, layer in enumerate(self.blocks):
ws_i = ws[:, idx + 1] if ws is not None else None
if (self.skip_layer is not None) and (idx == self.skip_layer):
net = torch.cat([net, p], 1)
net = layer(net, ws_i, up=1)
# forward to get the final results
w_idx = self.n_blocks # fc_in, self.blocks
feat_inputs = [net]
if not (self.merge_sigma_feat or self.no_sigma):
ws_i = ws[:, w_idx] if ws is not None else None
sigma_out = self.sigma_out(net, ws_i)
if use_normal:
gradients, = grad(
outputs=sigma_out, inputs=p_in,
grad_outputs=torch.ones_like(sigma_out, requires_grad=False),
retain_graph=True, create_graph=True, only_inputs=True)
feat_inputs.append(gradients)
ws_i = ws[:, -1] if ws is not None else None
net = torch.cat(feat_inputs, 1) if len(feat_inputs) > 1 else net
feat_out = self.feat_out(net, ws_i) # this is used for lowres output
if self.merge_sigma_feat: # split sigma from the feature
sigma_out, feat_out = feat_out[:, :self.shuffle_factor], feat_out[:, self.shuffle_factor:]
elif self.no_sigma:
sigma_out = None
if self.predict_rgb:
if self.use_viewdirs and ray_d is not None:
ray_d = ray_d / torch.norm(ray_d, dim=-1, keepdim=True)
ray_d = self.transform_points(ray_d, views=True)
if self.z_dim > 0:
ray_d = torch.cat([ray_d, repeat(z_app, 'b c -> b (h w s) c', h=height, w=width, s=n_steps)], -1)
ray_d = rearrange(ray_d, 'b (h w s) d -> (b s) d h w', h=height, w=width, s=n_steps)
feat_ray = self.from_ray(ray_d)
rgb = self.to_rgb(F.leaky_relu(feat_out + feat_ray))
else:
rgb = self.to_rgb(feat_out)
if self.final_sigmoid_act:
rgb = torch.sigmoid(rgb)
if self.normalized_feat:
feat_out = feat_out / (1e-7 + feat_out.norm(dim=-1, keepdim=True))
feat_out = torch.cat([rgb, feat_out], 1)
# transform back
if feat_out.ndim == 2: # mlp mode
sigma_out = rearrange(sigma_out, '(b s) d -> b s d', s=n_steps) if sigma_out is not None else None
feat_out = rearrange(feat_out, '(b s) d -> b s d', s=n_steps)
else:
sigma_out = rearrange(sigma_out, '(b s) d h w -> b (h w s) d', s=n_steps) if sigma_out is not None else None
feat_out = rearrange(feat_out, '(b s) d h w -> b (h w s) d', s=n_steps)
return feat_out, sigma_out
@persistence.persistent_class
class CameraGenerator(torch.nn.Module):
def __init__(self, in_dim=2, hi_dim=128, out_dim=2):
super().__init__()
self.affine1 = FullyConnectedLayer(in_dim, hi_dim, activation='lrelu')
self.affine2 = FullyConnectedLayer(hi_dim, hi_dim, activation='lrelu')
self.proj = FullyConnectedLayer(hi_dim, out_dim)
def forward(self, x):
cam = self.proj(self.affine2(self.affine1(x)))
return cam
@persistence.persistent_class
class CameraRay(object):
range_u = (0, 0)
range_v = (0.25, 0.25)
range_radius = (2.732, 2.732)
depth_range = [0.5, 6.]
gaussian_camera = False
angular_camera = False
intersect_ball = False
fov = 49.13
bg_start = 1.0
depth_transform = None # "LogWarp" or "InverseWarp"
dists_normalized = False # use normalized interval instead of real dists
random_rotate = False
ray_align_corner = True
nonparam_cameras = None
def __init__(self, camera_kwargs, **other_kwargs):
if len(camera_kwargs) == 0: # for compitatbility of old checkpoints
camera_kwargs.update(other_kwargs)
for key in camera_kwargs:
if hasattr(self, key):
setattr(self, key, camera_kwargs[key])
self.camera_matrix = get_camera_mat(fov=self.fov)
def prepare_pixels(self, img_res, tgt_res, vol_res, camera_matrices, theta, margin=0, **unused):
if self.ray_align_corner:
all_pixels = self.get_pixel_coords(img_res, camera_matrices, theta=theta)
all_pixels = rearrange(all_pixels, 'b (h w) c -> b c h w', h=img_res, w=img_res)
tgt_pixels = F.interpolate(all_pixels, size=(tgt_res, tgt_res), mode='nearest') if tgt_res < img_res else all_pixels.clone()
vol_pixels = F.interpolate(tgt_pixels, size=(vol_res, vol_res), mode='nearest') if tgt_res > vol_res else tgt_pixels.clone()
vol_pixels = rearrange(vol_pixels, 'b c h w -> b (h w) c')
else: # coordinates not aligned!
tgt_pixels = self.get_pixel_coords(tgt_res, camera_matrices, corner_aligned=False, theta=theta)
vol_pixels = self.get_pixel_coords(vol_res, camera_matrices, corner_aligned=False, theta=theta, margin=margin) \
if (tgt_res > vol_res) or (margin > 0) else tgt_pixels.clone()
tgt_pixels = rearrange(tgt_pixels, 'b (h w) c -> b c h w', h=tgt_res, w=tgt_res)
return vol_pixels, tgt_pixels
def prepare_pixels_regularization(self, tgt_pixels, n_reg_samples):
# only apply when size is bigger than voxel resolution
pace = tgt_pixels.size(-1) // n_reg_samples
idxs = torch.arange(0, tgt_pixels.size(-1), pace, device=tgt_pixels.device) # n_reg_samples
u_xy = torch.rand(tgt_pixels.size(0), 2, device=tgt_pixels.device)
u_xy = (u_xy * pace).floor().long() # batch_size x 2
x_idxs, y_idxs = idxs[None,:] + u_xy[:,:1], idxs[None,:] + u_xy[:,1:]
rand_indexs = (x_idxs[:,None,:] + y_idxs[:,:,None] * tgt_pixels.size(-1)).reshape(tgt_pixels.size(0), -1)
tgt_pixels = rearrange(tgt_pixels, 'b c h w -> b (h w) c')
rand_pixels = tgt_pixels.gather(1, rand_indexs.unsqueeze(-1).repeat(1,1,2))
return rand_pixels, rand_indexs
def get_roll(self, ws, training=True, theta=None, **unused):
if (self.random_rotate is not None) and training:
theta = torch.randn(ws.size(0)).to(ws.device) * self.random_rotate / 2
theta = theta / 180 * math.pi
else:
if theta is not None:
theta = torch.ones(ws.size(0)).to(ws.device) * theta
return theta
def get_camera(self, batch_size, device, mode='random', fov=None, force_uniform=False):
if fov is not None:
camera_matrix = get_camera_mat(fov)
else:
camera_matrix = self.camera_matrix
camera_mat = camera_matrix.repeat(batch_size, 1, 1).to(device)
reg_loss = None # TODO: useless
if isinstance(mode, list):
# default camera generator, we assume input mode is linear
if len(mode) == 3:
val_u, val_v, val_r = mode
r0 = self.range_radius[0]
r1 = self.range_radius[1]
else:
val_u, val_v, val_r, r_s = mode
r0 = self.range_radius[0] * r_s
r1 = self.range_radius[1] * r_s
world_mat = get_camera_pose(
self.range_u, self.range_v, [r0, r1],
val_u, val_v, val_r,
batch_size=batch_size,
gaussian=False, # input mode is by default uniform
angular=self.angular_camera).to(device)
elif isinstance(mode, torch.Tensor):
world_mat, mode = get_camera_pose_v2(
self.range_u, self.range_v, self.range_radius, mode,
gaussian=self.gaussian_camera and (not force_uniform),
angular=self.angular_camera)
world_mat = world_mat.to(device)
mode = torch.stack(mode, 1).to(device)
else:
world_mat, mode = get_random_pose(
self.range_u, self.range_v,
self.range_radius, batch_size,
gaussian=self.gaussian_camera,
angular=self.angular_camera)
world_mat = world_mat.to(device)
mode = torch.stack(mode, 1).to(device)
return camera_mat.float(), world_mat.float(), mode, reg_loss
def get_transformed_depth(self, di, reversed=False):
depth_range = self.depth_range
if (self.depth_transform is None) or (self.depth_transform == 'None'):
g_fwd, g_inv = lambda x: x, lambda x: x
elif self.depth_transform == 'LogWarp':
g_fwd, g_inv = math.log, torch.exp
elif self.depth_transform == 'InverseWarp':
g_fwd, g_inv = lambda x: 1/x, lambda x: 1/x
else:
raise NotImplementedError
if not reversed:
return g_inv(g_fwd(depth_range[1]) * di + g_fwd(depth_range[0]) * (1 - di))
else:
d0 = (g_fwd(di) - g_fwd(depth_range[0])) / (g_fwd(depth_range[1]) - g_fwd(depth_range[0]))
return d0.clip(min=0, max=1)
def get_evaluation_points(self, pixels_world=None, camera_world=None, di=None, p_i=None, no_reshape=False, transform=None):
if p_i is None:
batch_size = pixels_world.shape[0]
n_steps = di.shape[-1]
ray_i = pixels_world - camera_world
p_i = camera_world.unsqueeze(-2).contiguous() + \
di.unsqueeze(-1).contiguous() * ray_i.unsqueeze(-2).contiguous()
ray_i = ray_i.unsqueeze(-2).repeat(1, 1, n_steps, 1)
else:
assert no_reshape, "only used to transform points to a warped space"
if transform is None:
transform = self.depth_transform
if transform == 'LogWarp':
c = torch.tensor([1., 0., 0.]).to(p_i.device)
p_i = normalization_inverse_sqrt_dist_centered(
p_i, c[None, None, None, :], self.depth_range[1])
elif transform == 'InverseWarp':
# https://arxiv.org/pdf/2111.12077.pdf
p_n = p_i.norm(p=2, dim=-1, keepdim=True).clamp(min=1e-7)
con = p_n.ge(1).type_as(p_n)
p_i = p_i * (1 -con) + (2 - 1 / p_n) * (p_i / p_n) * con
if no_reshape:
return p_i
assert(p_i.shape == ray_i.shape)
p_i = p_i.reshape(batch_size, -1, 3)
ray_i = ray_i.reshape(batch_size, -1, 3)
return p_i, ray_i
def get_evaluation_points_bg(self, pixels_world, camera_world, di):
batch_size = pixels_world.shape[0]
n_steps = di.shape[-1]
n_pixels = pixels_world.shape[1]
ray_world = pixels_world - camera_world
ray_world = ray_world / ray_world.norm(dim=-1, keepdim=True) # normalize
camera_world = camera_world.unsqueeze(-2).expand(batch_size, n_pixels, n_steps, 3)
ray_world = ray_world.unsqueeze(-2).expand(batch_size, n_pixels, n_steps, 3)
bg_pts, _ = depth2pts_outside(camera_world, ray_world, di) # di: 1 ---> 0
bg_pts = bg_pts.reshape(batch_size, -1, 4)
ray_world = ray_world.reshape(batch_size, -1, 3)
return bg_pts, ray_world
def add_noise_to_interval(self, di):
di_mid = .5 * (di[..., 1:] + di[..., :-1])
di_high = torch.cat([di_mid, di[..., -1:]], dim=-1)
di_low = torch.cat([di[..., :1], di_mid], dim=-1)
noise = torch.rand_like(di_low)
ti = di_low + (di_high - di_low) * noise
return ti
def calc_volume_weights(self, sigma, z_vals=None, ray_vector=None, dists=None, last_dist=1e10):
if dists is None:
dists = z_vals[..., 1:] - z_vals[..., :-1]
if ray_vector is not None:
dists = dists * torch.norm(ray_vector, dim=-1, keepdim=True)
dists = torch.cat([dists, torch.ones_like(dists[..., :1]) * last_dist], dim=-1)
alpha = 1.-torch.exp(-F.relu(sigma)*dists)
if last_dist > 0:
alpha[..., -1] = 1
# alpha = 1.-torch.exp(-sigma * dists)
T = torch.cumprod(torch.cat([
torch.ones_like(alpha[:, :, :1]),
(1. - alpha + 1e-10), ], dim=-1), dim=-1)[..., :-1]
weights = alpha * T
return weights, T[..., -1], dists
def get_pixel_coords(self, tgt_res, camera_matrices, corner_aligned=True, margin=0, theta=None, invert_y=True):
device = camera_matrices[0].device
batch_size = camera_matrices[0].shape[0]
# margin = self.margin if margin is None else margin
full_pixels = arange_pixels((tgt_res, tgt_res),
batch_size, invert_y_axis=invert_y, margin=margin,
corner_aligned=corner_aligned).to(device)
if (theta is not None):
theta = theta.unsqueeze(-1)
x = full_pixels[..., 0] * torch.cos(theta) - full_pixels[..., 1] * torch.sin(theta)
y = full_pixels[..., 0] * torch.sin(theta) + full_pixels[..., 1] * torch.cos(theta)
full_pixels = torch.stack([x, y], -1)
return full_pixels
def get_origin_direction(self, pixels, camera_matrices):
camera_mat, world_mat = camera_matrices[:2]
if camera_mat.size(0) < pixels.size(0):
camera_mat = repeat(camera_mat, 'b c d -> (b s) c d', s=pixels.size(0)//camera_mat.size(0))
if world_mat.size(0) < pixels.size(0):
world_mat = repeat(world_mat, 'b c d -> (b s) c d', s=pixels.size(0)//world_mat.size(0))
pixels_world = image_points_to_world(pixels, camera_mat=camera_mat, world_mat=world_mat)
camera_world = origin_to_world(pixels.size(1), camera_mat=camera_mat, world_mat=world_mat)
ray_vector = pixels_world - camera_world
return pixels_world, camera_world, ray_vector
def set_camera_prior(self, dataset_cams):
self.nonparam_cameras = dataset_cams
@persistence.persistent_class
class VolumeRenderer(object):
n_ray_samples = 14
n_bg_samples = 4
n_final_samples = None # final nerf steps after upsampling (optional)
sigma_type = 'relu' # other allowed options including, "abs", "shiftedsoftplus", "exp"
hierarchical = True
fine_only = False
no_background = False
white_background = False
mask_background = False
pre_volume_size = None
bound = None
density_p_target = 1.0
tv_loss_weight = 0.0 # for now only works for density-based voxels
def __init__(self, renderer_kwargs, camera_ray, input_encoding=None, **other_kwargs):
if len(renderer_kwargs) == 0: # for compitatbility of old checkpoints
renderer_kwargs.update(other_kwargs)
for key in renderer_kwargs:
if hasattr(self, key):
setattr(self, key, renderer_kwargs[key])
self.C = camera_ray
self.I = input_encoding
def split_feat(self, x, img_channels, white_color=None, split_rgb=True):
img = x[:, :img_channels]
if split_rgb:
x = x[:, img_channels:]
if (white_color is not None) and self.white_background:
img = img + white_color
return x, img
def get_bound(self):
if self.bound is not None:
return self.bound
# when applying normalization, the points are restricted inside R=2 ball
if self.C.depth_transform == 'InverseWarp':
bound = 2
else: # TODO: this is a bit hacky as we assume object at origin
bound = (self.C.depth_range[1] - self.C.depth_range[0])
return bound
def get_density(self, sigma_raw, fg_nerf, no_noise=False, training=False):
if fg_nerf.use_sdf:
sigma = fg_nerf.density_transform.density_func(sigma_raw)
elif self.sigma_type == 'relu':
if training and (not no_noise): # adding noise to pass gradient?
sigma_raw = sigma_raw + torch.randn_like(sigma_raw)
sigma = F.relu(sigma_raw)
elif self.sigma_type == 'shiftedsoftplus': # https://arxiv.org/pdf/2111.11215.pdf
sigma = F.softplus(sigma_raw - 1) # 1 is the shifted bias.
elif self.sigma_type == 'exp_truncated': # density in the log-space
sigma = torch.exp(5 - F.relu(5 - (sigma_raw - 1))) # up-bound = 5, also shifted by 1
else:
sigma = sigma_raw
return sigma
def forward_hierarchical_sampling(self, di, weights, n_steps, det=False):
di_mid = 0.5 * (di[..., :-1] + di[..., 1:])
n_bins = di_mid.size(-1)
batch_size = di.size(0)
di_fine = sample_pdf(
di_mid.reshape(-1, n_bins),
weights.reshape(-1, n_bins+1)[:, 1:-1],
n_steps, det=det).reshape(batch_size, -1, n_steps)
return di_fine
def forward_rendering_with_pre_density(self, H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles):
pixels_world, camera_world, ray_vector = nerf_input_cams
z_shape_obj, z_app_obj = latent_codes[:2]
height, width = dividable(H.n_points)
fg_shape = [H.batch_size, height, width, H.n_steps]
bound = self.get_bound()
# sample points
di = torch.linspace(0., 1., steps=H.n_steps).to(H.device)
di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points)
if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
di = self.C.add_noise_to_interval(di)
di_trs = self.C.get_transformed_depth(di)
p_i, r_i = self.C.get_evaluation_points(pixels_world, camera_world, di_trs)
p_i = self.I.query_input_features(p_i, nerf_input_feats, fg_shape, bound)
pre_sigma_raw, p_i = p_i[...,:self.I.sigma_dim].sum(dim=-1, keepdim=True), p_i[..., self.I.sigma_dim:]
pre_sigma = self.get_density(rearrange(pre_sigma_raw, 'b (n s) () -> b n s', s=H.n_steps),
fg_nerf, training=H.training)
pre_weights = self.C.calc_volume_weights(
pre_sigma, di if self.C.dists_normalized else di_trs, ray_vector, last_dist=1e10)[0]
feat, _ = fg_nerf(p_i, r_i, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape)
feat = rearrange(feat, 'b (n s) d -> b n s d', s=H.n_steps)
feat = torch.sum(pre_weights.unsqueeze(-1) * feat, dim=-2)
output.feat += [feat]
output.fg_weights = pre_weights
output.fg_depths = (di, di_trs)
return output
def forward_sampling(self, H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles):
# TODO: experimental research code. Not functional yet.
pixels_world, camera_world, ray_vector = nerf_input_cams
z_shape_obj, z_app_obj = latent_codes[:2]
height, width = dividable(H.n_points)
bound = self.get_bound()
# just to simulate
H.n_steps = 64
di = torch.linspace(0., 1., steps=H.n_steps).to(H.device)
di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points)
if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
di = self.C.add_noise_to_interval(di)
di_trs = self.C.get_transformed_depth(di)
fg_shape = [H.batch_size, height, width, 1]
# iteration in the loop (?)
feats, sigmas = [], []
with torch.enable_grad():
di_trs.requires_grad_(True)
for s in range(di_trs.shape[-1]):
di_s = di_trs[..., s:s+1]
p_i, r_i = self.C.get_evaluation_points(pixels_world, camera_world, di_s)
if nerf_input_feats is not None:
p_i = self.I.query_input_features(p_i, nerf_input_feats, fg_shape, bound)
feat, sigma_raw = fg_nerf(p_i, r_i, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape, requires_grad=True)
sigma = self.get_density(sigma_raw, fg_nerf, training=H.training)
feats += [feat]
sigmas += [sigma]
feat, sigma = torch.stack(feats, 2), torch.cat(sigmas, 2)
fg_weights, bg_lambda = self.C.calc_volume_weights(
sigma, di if self.C.dists_normalized else di_trs, # use real dists for computing weights
ray_vector, last_dist=0 if not H.fg_inf_depth else 1e10)[:2]
fg_feat = torch.sum(fg_weights.unsqueeze(-1) * feat, dim=-2)
output.feat += [fg_feat]
output.full_out += [feat]
output.fg_weights = fg_weights
output.bg_lambda = bg_lambda
output.fg_depths = (di, di_trs)
return output
def forward_rendering(self, H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles):
pixels_world, camera_world, ray_vector = nerf_input_cams
z_shape_obj, z_app_obj = latent_codes[:2]
height, width = dividable(H.n_points)
fg_shape = [H.batch_size, height, width, H.n_steps]
bound = self.get_bound()
# sample points
di = torch.linspace(0., 1., steps=H.n_steps).to(H.device)
di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points)
if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
di = self.C.add_noise_to_interval(di)
di_trs = self.C.get_transformed_depth(di)
p_i, r_i = self.C.get_evaluation_points(pixels_world, camera_world, di_trs)
if nerf_input_feats is not None:
p_i = self.I.query_input_features(p_i, nerf_input_feats, fg_shape, bound)
feat, sigma_raw = fg_nerf(p_i, r_i, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape)
feat = rearrange(feat, 'b (n s) d -> b n s d', s=H.n_steps)
sigma_raw = rearrange(sigma_raw.squeeze(-1), 'b (n s) -> b n s', s=H.n_steps)
sigma = self.get_density(sigma_raw, fg_nerf, training=H.training)
fg_weights, bg_lambda = self.C.calc_volume_weights(
sigma, di if self.C.dists_normalized else di_trs, # use real dists for computing weights
ray_vector, last_dist=0 if not H.fg_inf_depth else 1e10)[:2]
if self.hierarchical and (not H.get('disable_hierarchical', False)):
with torch.no_grad():
di_fine = self.forward_hierarchical_sampling(di, fg_weights, H.n_steps, det=(not H.training))
di_trs_fine = self.C.get_transformed_depth(di_fine)
p_f, r_f = self.C.get_evaluation_points(pixels_world, camera_world, di_trs_fine)
if nerf_input_feats is not None:
p_f = self.I.query_input_features(p_f, nerf_input_feats, fg_shape, bound)
feat_f, sigma_raw_f = fg_nerf(p_f, r_f, z_shape_obj, z_app_obj, ws=styles, shape=fg_shape)
feat_f = rearrange(feat_f, 'b (n s) d -> b n s d', s=H.n_steps)
sigma_raw_f = rearrange(sigma_raw_f.squeeze(-1), 'b (n s) -> b n s', s=H.n_steps)
sigma_f = self.get_density(sigma_raw_f, fg_nerf, training=H.training)
feat = torch.cat([feat_f, feat], 2)
sigma = torch.cat([sigma_f, sigma], 2)
sigma_raw = torch.cat([sigma_raw_f, sigma_raw], 2)
di = torch.cat([di_fine, di], 2)
di_trs = torch.cat([di_trs_fine, di_trs], 2)
di, indices = torch.sort(di, dim=2)
di_trs = torch.gather(di_trs, 2, indices)
sigma = torch.gather(sigma, 2, indices)
sigma_raw = torch.gather(sigma_raw, 2, indices)
feat = torch.gather(feat, 2, repeat(indices, 'b n s -> b n s d', d=feat.size(-1)))
fg_weights, bg_lambda = self.C.calc_volume_weights(
sigma, di if self.C.dists_normalized else di_trs, # use real dists for computing weights,
ray_vector, last_dist=0 if not H.fg_inf_depth else 1e10)[:2]
fg_feat = torch.sum(fg_weights.unsqueeze(-1) * feat, dim=-2)
output.feat += [fg_feat]
output.full_out += [feat]
output.fg_weights = fg_weights
output.bg_lambda = bg_lambda
output.fg_depths = (di, di_trs)
return output
def forward_rendering_background(self, H, output, bg_nerf, nerf_input_cams, latent_codes, styles_bg):
pixels_world, camera_world, _ = nerf_input_cams
z_shape_bg, z_app_bg = latent_codes[2:]
height, width = dividable(H.n_points)
bg_shape = [H.batch_size, height, width, H.n_bg_steps]
if H.fixed_input_cams is not None:
pixels_world, camera_world, _ = H.fixed_input_cams
# render background, use NeRF++ inverse sphere parameterization
di = torch.linspace(-1., 0., steps=H.n_bg_steps).to(H.device)
di = repeat(di, 's -> b n s', b=H.batch_size, n=H.n_points) * self.C.bg_start
if (H.training and (not H.get('disable_noise', False))) or H.get('force_noise', False):
di = self.C.add_noise_to_interval(di)
p_bg, r_bg = self.C.get_evaluation_points_bg(pixels_world, camera_world, -di)
feat, sigma_raw = bg_nerf(p_bg, r_bg, z_shape_bg, z_app_bg, ws=styles_bg, shape=bg_shape)
feat = rearrange(feat, 'b (n s) d -> b n s d', s=H.n_bg_steps)
sigma_raw = rearrange(sigma_raw.squeeze(-1), 'b (n s) -> b n s', s=H.n_bg_steps)
sigma = self.get_density(sigma_raw, bg_nerf, training=H.training)
bg_weights = self.C.calc_volume_weights(sigma, di, None)[0]
bg_feat = torch.sum(bg_weights.unsqueeze(-1) * feat, dim=-2)
if output.get('bg_lambda', None) is not None:
bg_feat = output.bg_lambda.unsqueeze(-1) * bg_feat
output.feat += [bg_feat]
output.full_out += [feat]
output.bg_weights = bg_weights
output.bg_depths = di
return output
def forward_volume_rendering(
self,
nerf_modules, # (fg_nerf, bg_nerf)
camera_matrices, # camera (K, RT)
vol_pixels,
nerf_input_feats = None,
latent_codes = None,
styles = None,
styles_bg = None,
not_render_background = False,
only_render_background = False,
render_option = None,
return_full = False,
alpha = 0,
**unused):
assert (latent_codes is not None) or (styles is not None)
assert self.no_background or (nerf_input_feats is None), "input features do not support background field"
# hyper-parameters for rendering
H = EasyDict(**unused)
output = EasyDict()
output.reg_loss = EasyDict()
output.feat = []
output.full_out = []
if render_option is None:
render_option = ""
H.render_option = render_option
H.alpha = alpha
# prepare for rendering (parameters)
fg_nerf, bg_nerf = nerf_modules
H.training = fg_nerf.training
H.device = camera_matrices[0].device
H.batch_size = camera_matrices[0].shape[0]
H.img_channels = fg_nerf.img_channels
H.n_steps = self.n_ray_samples
H.n_bg_steps = self.n_bg_samples
if alpha == -1:
H.n_steps = 20 # just for memory safe.
if "steps" in render_option:
H.n_steps = [int(r.split(':')[1]) for r in H.render_option.split(',') if r[:5] == 'steps'][0]
# prepare for pixels for generating images
if isinstance(vol_pixels, tuple):
vol_pixels, rand_pixels = vol_pixels
pixels = torch.cat([vol_pixels, rand_pixels], 1)
H.rnd_res = int(math.sqrt(rand_pixels.size(1)))
else:
pixels, rand_pixels, H.rnd_res = vol_pixels, None, None
H.tgt_res, H.n_points = int(math.sqrt(vol_pixels.size(1))), pixels.size(1)
nerf_input_cams = self.C.get_origin_direction(pixels, camera_matrices)
# set up an frozen camera for background if necessary
if ('freeze_bg' in H.render_option) and (bg_nerf is not None):
pitch, yaw = 0.2 + np.pi/2, 0
range_u, range_v = self.C.range_u, self.C.range_v
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
fixed_camera = self.C.get_camera(
batch_size=H.batch_size, mode=[u, v, 0.5], device=H.device)
H.fixed_input_cams = self.C.get_origin_direction(pixels, fixed_camera)
else:
H.fixed_input_cams = None
H.fg_inf_depth = (self.no_background or not_render_background) and (not self.white_background)
assert(not (not_render_background and only_render_background))
# volume rendering options: bg_weights, bg_lambda = None, None
if (nerf_input_feats is not None) and \
len(nerf_input_feats) == 4 and \
nerf_input_feats[2] == 'tri_vector' and \
self.I.sigma_dim > 0 and H.fg_inf_depth:
# volume rendering with pre-computed density similar to tensor-decomposition
output = self.forward_rendering_with_pre_density(
H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles)
else:
# standard volume rendering
if not only_render_background:
output = self.forward_rendering(
H, output, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles)
# background rendering (NeRF++)
if (not not_render_background) and (not self.no_background):
output = self.forward_rendering_background(
H, output, bg_nerf, nerf_input_cams, latent_codes, styles_bg)
if ('early' in render_option) and ('value' not in render_option):
return self.gen_optional_output(
H, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles, output)
# ------------------------------------------- PREPARE FULL OUTPUT (NO 2D aggregation) -------------------------------------------- #
vol_len = vol_pixels.size(1)
feat_map = sum(output.feat)
full_x = rearrange(feat_map[:, :vol_len], 'b (h w) d -> b d h w', h=H.tgt_res)
split_rgb = fg_nerf.add_rgb or fg_nerf.predict_rgb
full_out = self.split_feat(full_x, H.img_channels, None, split_rgb=split_rgb)
if rand_pixels is not None: # used in full supervision (debug later)
if return_full:
assert (fg_nerf.predict_rgb or fg_nerf.add_rgb)
rand_outputs = [f[:,vol_pixels.size(1):] for f in output.full_out]
full_weights = torch.cat([output.fg_weights, output.bg_weights * output.bg_lambda.unsqueeze(-1)], -1) \
if output.get('bg_weights', None) is not None else output.fg_weights
full_weights = full_weights[:,vol_pixels.size(1):]
full_weights = rearrange(full_weights, 'b (h w) s -> b s h w', h=H.rnd_res, w=H.rnd_res)
lh, lw = dividable(full_weights.size(1))
full_x = rearrange(torch.cat(rand_outputs, 2), 'b (h w) (l m) d -> b d (l h) (m w)',
h=H.rnd_res, w=H.rnd_res, l=lh, m=lw)
full_x, full_img = self.split_feat(full_x, H.img_channels, split_rgb=split_rgb)
output.rand_out = (full_x, full_img, full_weights)
else:
rand_x = rearrange(feat_map[:, vol_len:], 'b (h w) d -> b d h w', h=H.rnd_res)
output.rand_out = self.split_feat(rand_x, H.img_channels, split_rgb=split_rgb)
output.full_out = full_out
return output
def post_process_outputs(self, outputs, freeze_nerf=False):
if freeze_nerf:
outputs = [x.detach() if isinstance(x, torch.Tensor) else x for x in outputs]
x, img = outputs[0], outputs[1]
probs = outputs[2] if len(outputs) == 3 else None
return x, img, probs
def gen_optional_output(self, H, fg_nerf, nerf_input_cams, nerf_input_feats, latent_codes, styles, output):
_, camera_world, ray_vector = nerf_input_cams
z_shape_obj, z_app_obj = latent_codes[:2]
fg_depth_map = torch.sum(output.fg_weights * output.fg_depths[1], dim=-1, keepdim=True)
img = camera_world[:, :1] + fg_depth_map * ray_vector
img = img.permute(0,2,1).reshape(-1, 3, H.tgt_res, H.tgt_res)
if 'input_feats' in H.render_option:
a, b = [r.split(':')[1:] for r in H.render_option.split(',') if r.startswith('input_feats')][0]
a, b = int(a), int(b)
if nerf_input_feats[0] == 'volume':
img = nerf_input_feats[1][:,a:a+3,b,:,:]
elif nerf_input_feats[0] == 'tri_plane':
img = nerf_input_feats[1][:,b,a:a+3,:,:]
elif nerf_input_feats[0] == 'hash_table':
assert self.I.hash_mode == 'grid_hash'
img = nerf_input_feats[1][:,self.I.offsets[b]:self.I.offsets[b+1], :]
siz = int(np.ceil(img.size(1)**(1/3)))
img = rearrange(img, 'b (d h w) c -> b (d c) h w', h=siz, w=siz, d=siz)
img = img[:, a:a+3]
else:
raise NotImplementedError
if 'normal' in H.render_option.split(','):
shift_l, shift_r = img[:,:,2:,:], img[:,:,:-2,:]
shift_u, shift_d = img[:,:,:,2:], img[:,:,:,:-2]
diff_hor = normalize(shift_r - shift_l, axis=1)[0][:, :, :, 1:-1]
diff_ver = normalize(shift_u - shift_d, axis=1)[0][:, :, 1:-1, :]
normal = torch.cross(diff_hor, diff_ver, dim=1)
img = normalize(normal, axis=1)[0]
if 'gradient' in H.render_option.split(','):
points, _ = self.C.get_evaluation_points(camera_world + ray_vector, camera_world, output.fg_depths[1])
fg_shape = [H.batch_size, H.tgt_res, H.tgt_res, output.fg_depths[1].size(-1)]
with torch.enable_grad():
points.requires_grad_(True)
inputs = self.I.query_input_features(points, nerf_input_feats, fg_shape, self.get_bound(), True) \
if nerf_input_feats is not None else points
if (nerf_input_feats is not None) and len(nerf_input_feats) == 4 and nerf_input_feats[2] == 'tri_vector' and (self.I.sigma_dim > 0):
sigma_out = inputs[..., :8].sum(dim=-1, keepdim=True)
else:
_, sigma_out = fg_nerf(inputs, None, ws=styles, shape=fg_shape, z_shape=z_shape_obj, z_app=z_app_obj, requires_grad=True)
gradients, = grad(
outputs=sigma_out, inputs=points,
grad_outputs=torch.ones_like(sigma_out, requires_grad=False),
retain_graph=True, create_graph=True, only_inputs=True)
gradients = rearrange(gradients, 'b (n s) d -> b n s d', s=output.fg_depths[1].size(-1))
avg_grads = (gradients * output.fg_weights.unsqueeze(-1)).sum(-2)
avg_grads = F.normalize(avg_grads, p=2, dim=-1)
normal = rearrange(avg_grads, 'b (h w) s -> b s h w', h=H.tgt_res, w=H.tgt_res)
img = -normal
return {'full_out': (None, img)}
@persistence.persistent_class
class Upsampler(object):
no_2d_renderer = False
no_residual_img = False
block_reses = None
shared_rgb_style = False
upsample_type = 'default'
img_channels = 3
in_res = 32
out_res = 512
channel_base = 1
channel_base_sz = None
channel_max = 512
channel_dict = None
out_channel_dict = None
def __init__(self, upsampler_kwargs, **other_kwargs):
# for compitatbility of old checkpoints
for key in other_kwargs:
if hasattr(self, key) and (key not in upsampler_kwargs):
upsampler_kwargs[key] = other_kwargs[key]
for key in upsampler_kwargs:
if hasattr(self, key):
setattr(self, key, upsampler_kwargs[key])
self.out_res_log2 = int(np.log2(self.out_res))
# set up upsamplers
if self.block_reses is None:
self.block_resolutions = [2 ** i for i in range(2, self.out_res_log2 + 1)]
self.block_resolutions = [b for b in self.block_resolutions if b > self.in_res]
else:
self.block_resolutions = self.block_reses
if self.no_2d_renderer:
self.block_resolutions = []
def build_network(self, w_dim, input_dim, **block_kwargs):
upsamplers = []
if len(self.block_resolutions) > 0: # nerf resolution smaller than image
channel_base = int(self.channel_base * 32768) if self.channel_base_sz is None else self.channel_base_sz
fp16_resolution = self.block_resolutions[0] * 2 # do not use fp16 for the first block
if self.channel_dict is None:
channels_dict = {res: min(channel_base // res, self.channel_max) for res in self.block_resolutions}
else:
channels_dict = self.channel_dict
if self.out_channel_dict is not None:
img_channels = self.out_channel_dict
else:
img_channels = {res: self.img_channels for res in self.block_resolutions}
for ir, res in enumerate(self.block_resolutions):
res_before = self.block_resolutions[ir-1] if ir > 0 else self.in_res
in_channels = channels_dict[res_before] if ir > 0 else input_dim
out_channels = channels_dict[res]
use_fp16 = (res >= fp16_resolution) # TRY False
is_last = (ir == (len(self.block_resolutions) - 1))
no_upsample = (res == res_before)
block = util.construct_class_by_name(
class_name=block_kwargs.get('block_name', "training.networks.SynthesisBlock"),
in_channels=in_channels,
out_channels=out_channels,
w_dim=w_dim,
resolution=res,
img_channels=img_channels[res],
is_last=is_last,
use_fp16=use_fp16,
disable_upsample=no_upsample,
block_id=ir,
**block_kwargs)
upsamplers += [{
'block': block,
'num_ws': block.num_conv if not is_last else block.num_conv + block.num_torgb,
'name': f'b{res}' if res_before != res else f'b{res}_l{ir}'
}]
self.num_ws = sum([u['num_ws'] for u in upsamplers])
return upsamplers
def forward_ws_split(self, ws, blocks):
block_ws, w_idx = [], 0
for ir, res in enumerate(self.block_resolutions):
block = blocks[ir]
if self.shared_rgb_style:
w = ws.narrow(1, w_idx, block.num_conv)
w_img = ws.narrow(1, -block.num_torgb, block.num_torgb) # TODO: tRGB to use the same style (?)
block_ws.append(torch.cat([w, w_img], 1))
else:
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += block.num_conv
return block_ws
def forward_network(self, blocks, block_ws, x, img, target_res, alpha, skip_up=False, **block_kwargs):
imgs = []
for index_l, (res, cur_ws) in enumerate(zip(self.block_resolutions, block_ws)):
if res > target_res:
break
block = blocks[index_l]
block_noise = block_kwargs['voxel_noise'][index_l] if "voxel_noise" in block_kwargs else None
x, img = block(
x,
img if not self.no_residual_img else None,
cur_ws,
block_noise=block_noise,
skip_up=skip_up,
**block_kwargs)
imgs += [img]
return imgs
@persistence.persistent_class
class NeRFInput(Upsampler):
""" Instead of positional encoding, it learns additional features for each points.
However, it is important to normalize the input points
"""
output_mode = 'none'
input_mode = 'random' # coordinates
architecture = 'skip'
# only useful for triplane/volume inputs
in_res = 4
out_res = 256
out_dim = 32
sigma_dim = 8
split_size = 64
# only useful for hashtable inputs
hash_n_min = 16
hash_n_max = 512
hash_size = 16
hash_level = 16
hash_dim_in = 32
hash_dim_mid = None
hash_dim_out = 2
hash_n_layer = 4
hash_mode = 'fast_hash' # grid_hash (like volumes)
keep_posenc = -1
keep_nerf_latents = False
def build_network(self, w_dim, **block_kwargs):
# change global settings for input field.
kwargs_copy = copy.deepcopy(block_kwargs)
kwargs_copy['kernel_size'] = 3
kwargs_copy['upsample_mode'] = 'default'
kwargs_copy['use_noise'] = True
kwargs_copy['architecture'] = self.architecture
self._flag = 0
assert self.input_mode == 'random', \
"currently only support normal StyleGAN2. in the future we may work on other inputs."
# plane-based inputs with modulated 2D convolutions
if self.output_mode == 'tri_plane_reshape':
self.img_channels, in_channels, const = 3 * self.out_dim, 0, None
elif self.output_mode == 'tri_plane_product': #TODO: sigma_dim is for density
self.img_channels, in_channels = 3 * (self.out_dim + self.sigma_dim), 0
const = torch.nn.Parameter(0.1 * torch.randn([self.img_channels, self.out_res]))
elif self.output_mode == 'multi_planes':
self.img_channels, in_channels, const = self.out_dim * self.split_size, 0, None
kwargs_copy['architecture'] = 'orig'
# volume-based inputs with modulated 3D convolutions
elif self.output_mode == '3d_volume': # use 3D convolution to generate
kwargs_copy['architecture'] = 'orig'
kwargs_copy['mode'] = '3d'
self.img_channels, in_channels, const = self.out_dim, 0, None
elif self.output_mode == 'ms_volume': # multi-resolution voulume, between hashtable and volumes
kwargs_copy['architecture'] = 'orig'
kwargs_copy['mode'] = '3d'
self.img_channels, in_channels, const = self.out_dim, 0, None
# embedding-based inputs with modulated MLPs
elif self.output_mode == 'hash_table':
if self.hash_mode == 'grid_hash':
assert self.hash_size % 3 == 0, "needs to be 3D"
kwargs_copy['hash_size'], self._flag = 2 ** self.hash_size, 1
assert self.hash_dim_out * self.hash_level == self.out_dim, "size must matched"
return self.build_modulated_embedding(w_dim, **kwargs_copy)
elif self.output_mode == 'ms_nerf_hash':
self.hash_mode, self._flag = 'grid_hash', 2
ms_nerf = NeRFBlock({
'rgb_out_dim': self.hash_dim_out * self.hash_level, # HACK
'magnitude_ema_beta': block_kwargs['magnitude_ema_beta'],
'no_sigma': True, 'predict_rgb': False, 'add_rgb': False,
'n_freq_posenc': 5,
})
self.num_ws = ms_nerf.num_ws
return [{'block': ms_nerf, 'num_ws': ms_nerf.num_ws, 'name': 'ms_nerf'}]
else:
raise NotImplementedError
networks = super().build_network(w_dim, in_channels, **kwargs_copy)
if const is not None:
networks.append({'block': const, 'num_ws': 0, 'name': 'const'})
return networks
def forward_ws_split(self, ws, blocks):
if self._flag == 1:
return ws.split(1, dim=1)[:len(blocks)-1]
elif self._flag == 0:
return super().forward_ws_split(ws, blocks)
else:
return ws # do not split
def forward_network(self, blocks, block_ws, batch_size, **block_kwargs):
x, img, out = None, None, None
def _forward_conv_networks(x, img, blocks, block_ws):
for index_l, (res, cur_ws) in enumerate(zip(self.block_resolutions, block_ws)):
x, img = blocks[index_l](x, img, cur_ws, **block_kwargs)
return img
def _forward_ffn_networks(x, blocks, block_ws):
#TODO: FFN is implemented as 1x1 conv for now #
h, w = dividable(x.size(0))
x = repeat(x, 'n d -> b n d', b=batch_size)
x = rearrange(x, 'b (h w) d -> b d h w', h=h, w=w)
for index_l, cur_ws in enumerate(block_ws):
block, cur_ws = blocks[index_l], cur_ws[:, 0]
x = block(x, cur_ws)
return x
# tri-plane outputs
if 'tri_plane' in self.output_mode:
img = _forward_conv_networks(x, img, blocks, block_ws)
if self.output_mode == 'tri_plane_reshape':
out = ('tri_plane', rearrange(img, 'b (s c) h w -> b s c h w', s=3))
elif self.output_mode == 'tri_plane_product':
out = ('tri_plane', rearrange(img, 'b (s c) h w -> b s c h w', s=3),
'tri_vector', repeat(rearrange(blocks[-1], '(s c) d -> s c d', s=3), 's c d -> b s c d', b=img.size(0)))
else:
raise NotImplementedError("remove support for other types of tri-plane implementation.")
# volume/3d voxel outputs
elif self.output_mode == 'multi_planes':
img = _forward_conv_networks(x, img, blocks, block_ws)
out = ('volume', rearrange(img, 'b (s c) h w -> b s c h w', s=self.out_dim))
elif self.output_mode == '3d_volume':
img = _forward_conv_networks(x, img, blocks, block_ws)
out = ('volume', img)
# multi-resolution 3d volume outputs (similar to hash-table)
elif self.output_mode == 'ms_volume':
img = _forward_conv_networks(x, img, blocks, block_ws)
out = ('ms_volume', rearrange(img, 'b (l m) d h w -> b l m d h w', l=self.hash_level))
# hash-table outputs (need hash sample implemented #TODO#
elif self.output_mode == 'hash_table':
x, blocks = blocks[-1], blocks[:-1]
if len(blocks) > 0:
x = _forward_ffn_networks(x, blocks, block_ws)
out = ('hash_table', rearrange(x, 'b d h w -> b (h w) d'))
else:
out = ('hash_table', repeat(x, 'n d -> b n d', b=batch_size))
elif self.output_mode == 'ms_nerf_hash':
# prepare inputs for nerf
x = torch.linspace(-1, 1, steps=self.out_res, device=block_ws.device)
x = torch.stack(torch.meshgrid(x,x,x), -1).reshape(-1, 3)
x = repeat(x, 'n s -> b n s', b=block_ws.size(0))
x = blocks[0](x, None, ws=block_ws, shape=[block_ws.size(0), 32, 32, 32])[0]
x = rearrange(x, 'b (d h w) (l m) -> b l m d h w', l=self.hash_level, d=32, h=32, w=32)
out = ('ms_volume', x)
else:
raise NotImplementedError
return out
def query_input_features(self, p_i, input_feats, p_shape, bound, grad_inputs=False):
batch_size, height, width, n_steps = p_shape
p_i = p_i / bound
if input_feats[0] == 'tri_plane':
# TODO!! Our world space, x->depth, y->width, z->height
lh, lw = dividable(n_steps)
p_ds = rearrange(p_i, 'b (h w l m) d -> b (l h) (m w) d',
b=batch_size, h=height, w=width, l=lh, m=lw).split(1, dim=-1)
px, py, pz = p_ds[0], p_ds[1], p_ds[2]
# project points onto three planes
p_xy = torch.cat([px, py], -1)
p_xz = torch.cat([px, pz], -1)
p_yz = torch.cat([py, pz], -1)
p_gs = torch.cat([p_xy, p_xz, p_yz], 0)
f_in = torch.cat([input_feats[1][:, i] for i in range(3)], 0)
p_f = grid_sample(f_in, p_gs) # gradient-fix bilinear interpolation
p_f = [p_f[i * batch_size: (i+1) * batch_size] for i in range(3)]
# project points to three vectors (optional)
if len(input_feats) == 4 and input_feats[2] == 'tri_vector':
# TODO: PyTorch did not support grid_sample for 1D data. Maybe need custom code.
p_gs_vec = torch.cat([pz, py, px], 0)
f_in_vec = torch.cat([input_feats[3][:, i] for i in range(3)], 0)
p_f_vec = grid_sample(f_in_vec.unsqueeze(-1), torch.cat([torch.zeros_like(p_gs_vec), p_gs_vec], -1))
p_f_vec = [p_f_vec[i * batch_size: (i+1) * batch_size] for i in range(3)]
# multiply on the triplane features
p_f = [m * v for m, v in zip(p_f, p_f_vec)]
p_f = sum(p_f)
p_f = rearrange(p_f, 'b d (l h) (m w) -> b (h w l m) d', l=lh, m=lw)
elif input_feats[0] == 'volume':
# TODO!! Our world space, x->depth, y->width, z->height
# (width-c, height-c, depth-c), volume (B x N x D x H x W)
p_ds = rearrange(p_i, 'b (h w s) d -> b s h w d',
b=batch_size, h=height, w=width, s=n_steps).split(1, dim=-1)
px, py, pz = p_ds[0], p_ds[1], p_ds[2]
p_yzx = torch.cat([py, -pz, px], -1)
p_f = F.grid_sample(input_feats[1], p_yzx, mode='bilinear', align_corners=False)
p_f = rearrange(p_f, 'b c s h w -> b (h w s) c')
elif input_feats[0] == 'ms_volume':
# TODO!! Multi-resolution volumes (experimental)
# for smoothness, maybe we should expand the volume? (TODO)
# print(p_i.shape)
ms_v = input_feats[1].new_zeros(
batch_size, self.hash_level, self.hash_dim_out, self.out_res+1, self.out_res+1, self.out_res+1)
ms_v[..., 1:, 1:, 1:] = input_feats[1].flip([3,4,5])
ms_v[..., :self.out_res, :self.out_res, :self.out_res] = input_feats[1]
v_size = ms_v.size(-1)
# multi-resolutions
b = math.exp((math.log(self.hash_n_max) - math.log(self.hash_n_min))/(self.hash_level-1))
hash_res_ls = [round(self.hash_n_min * b ** l) for l in range(self.hash_level)]
# prepare interpolate grids
p_ds = rearrange(p_i, 'b (h w s) d -> b s h w d',
b=batch_size, h=height, w=width, s=n_steps).split(1, dim=-1)
px, py, pz = p_ds[0], p_ds[1], p_ds[2]
p_yzx = torch.cat([py, -pz, px], -1)
p_yzx = ((p_yzx + 1) / 2).clamp(min=0, max=1) # normalize to 0~1 (just for safe)
p_yzx = torch.stack([p_yzx if n < v_size else torch.fmod(p_yzx * n, v_size) / v_size for n in hash_res_ls], 1)
p_yzx = (p_yzx * 2 - 1).view(-1, n_steps, height, width, 3)
ms_v = ms_v.view(-1, self.hash_dim_out, v_size, v_size, v_size) # back to -1~1
p_f = F.grid_sample(ms_v, p_yzx, mode='bilinear', align_corners=False)
p_f = rearrange(p_f, '(b l) c s h w -> b (h w s) (l c)', l=self.hash_level)
elif input_feats[0] == 'hash_table':
# TODO:!! Experimental code trying to learn hashtable used in (maybe buggy)
# https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf
p_xyz = ((p_i + 1) / 2).clamp(min=0, max=1) # normalize to 0~1
p_f = hash_sample(
p_xyz, input_feats[1], self.offsets.to(p_xyz.device),
self.beta, self.hash_n_min, grad_inputs, mode=self.hash_mode)
else:
raise NotImplementedError
if self.keep_posenc > -1:
if self.keep_posenc > 0:
p_f = torch.cat([p_f, positional_encoding(p_i, self.keep_posenc, use_pos=True)], -1)
else:
p_f = torch.cat([p_f, p_i], -1)
return p_f
def build_hashtable_info(self, hash_size):
self.beta = math.exp((math.log(self.hash_n_max) - math.log(self.hash_n_min)) / (self.hash_level-1))
self.hash_res_ls = [round(self.hash_n_min * self.beta ** l) for l in range(self.hash_level)]
offsets, offset = [], 0
for i in range(self.hash_level):
resolution = self.hash_res_ls[i]
params_in_level = min(hash_size, (resolution + 1) ** 3)
offsets.append(offset)
offset += params_in_level
offsets.append(offset)
self.offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
return offset
def build_modulated_embedding(self, w_dim, hash_size, **block_kwargs):
# allocate parameters
offset = self.build_hashtable_info(hash_size)
hash_const = torch.nn.Parameter(torch.zeros(
[offset, self.hash_dim_in if self.hash_n_layer > -1 else self.hash_dim_out]))
hash_const.data.uniform_(-1e-4, 1e-4)
hash_networks = []
if self.hash_n_layer > -1:
input_dim = self.hash_dim_in
for l in range(self.hash_n_layer):
output_dim = self.hash_dim_mid if self.hash_dim_mid is not None else self.hash_dim_in
hash_networks.append({
'block': Style2Layer(input_dim, output_dim, w_dim),
'num_ws': 1, 'name': f'hmlp{l}'
})
input_dim = output_dim
hash_networks.append({
'block': ToRGBLayer(input_dim, self.hash_dim_out, w_dim, kernel_size=1),
'num_ws': 1, 'name': 'hmlpout'})
hash_networks.append({'block': hash_const, 'num_ws': 0, 'name': 'hash_const'})
self.num_ws = sum([h['num_ws'] for h in hash_networks])
return hash_networks
@persistence.persistent_class
class NeRFSynthesisNetwork(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels, # Number of color channels.
channel_base = 1,
channel_max = 1024,
# module settings
camera_kwargs = {},
renderer_kwargs = {},
upsampler_kwargs = {},
input_kwargs = {},
foreground_kwargs = {},
background_kwargs = {},
# nerf space settings
z_dim = 256,
z_dim_bg = 128,
rgb_out_dim = 256,
rgb_out_dim_bg = None,
resolution_vol = 32,
resolution_start = None,
progressive = True,
prog_nerf_only = False,
interp_steps = None, # (optional) "start_step:final_step"
# others (regularization)
regularization = [], # nv_beta, nv_vol
predict_camera = False,
camera_condition = None,
n_reg_samples = 0,
reg_full = False,
cam_based_sampler = False,
rectangular = None,
freeze_nerf = False,
**block_kwargs, # Other arguments for SynthesisBlock.
):
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
super().__init__()
# dimensions
self.w_dim = w_dim
self.z_dim = z_dim
self.z_dim_bg = z_dim_bg
self.num_ws = 0
self.rgb_out_dim = rgb_out_dim
self.rgb_out_dim_bg = rgb_out_dim_bg if rgb_out_dim_bg is not None else rgb_out_dim
self.img_resolution = img_resolution
self.resolution_vol = resolution_vol if resolution_vol < img_resolution else img_resolution
self.resolution_start = resolution_start if resolution_start is not None else resolution_vol
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
# number of samples
self.n_reg_samples = n_reg_samples
self.reg_full = reg_full
self.use_noise = block_kwargs.get('use_noise', False)
# ---------------------------------- Initialize Modules ---------------------------------------- -#
# camera module
self.C = CameraRay(camera_kwargs, **block_kwargs)
# input encoding module
if (len(input_kwargs) > 0) and (input_kwargs['output_mode'] != 'none'): # using synthezied inputs
input_kwargs['channel_base'] = input_kwargs.get('channel_base', channel_base)
input_kwargs['channel_max'] = input_kwargs.get('channel_max', channel_max)
self.I = NeRFInput(input_kwargs, **block_kwargs)
else:
self.I = None
# volume renderer module
self.V = VolumeRenderer(renderer_kwargs, camera_ray=self.C, input_encoding=self.I, **block_kwargs)
# upsampler module
upsampler_kwargs.update(dict(
img_channels=img_channels,
in_res=resolution_vol,
out_res=img_resolution,
channel_max=channel_max,
channel_base=channel_base))
self.U = Upsampler(upsampler_kwargs, **block_kwargs)
# full model resolutions
self.block_resolutions = copy.deepcopy(self.U.block_resolutions)
if self.resolution_start < self.resolution_vol:
r = self.resolution_vol
while r > self.resolution_start:
self.block_resolutions.insert(0, r)
r = r // 2
self.predict_camera = predict_camera
if predict_camera: # encoder side camera predictor (not very useful)
self.camera_generator = CameraGenerator()
self.camera_condition = camera_condition
if self.camera_condition is not None: # style vector modulated by the camera poses (uv)
self.camera_map = MappingNetwork(z_dim=0, c_dim=16, w_dim=self.w_dim, num_ws=None, w_avg_beta=None, num_layers=2)
# ray level choices
self.regularization = regularization
self.margin = block_kwargs.get('margin', 0)
self.activation = block_kwargs.get('activation', 'lrelu')
self.rectangular_crop = rectangular # [384, 512] ??
# nerf (foregournd/background)
foreground_kwargs.update(dict(
z_dim=self.z_dim,
w_dim=w_dim,
rgb_out_dim=self.rgb_out_dim,
activation=self.activation))
# disable positional encoding if input encoding is given
if self.I is not None:
foreground_kwargs.update(dict(
disable_latents=(not self.I.keep_nerf_latents),
input_dim=self.I.out_dim + 3 * (2 * self.I.keep_posenc + 1)
if self.I.keep_posenc > -1 else self.I.out_dim,
positional_encoding='none'))
self.fg_nerf = NeRFBlock(foreground_kwargs)
self.num_ws += self.fg_nerf.num_ws
if not self.V.no_background:
background_kwargs.update(dict(
z_dim=self.z_dim_bg, w_dim=w_dim,
rgb_out_dim=self.rgb_out_dim_bg,
activation=self.activation))
self.bg_nerf = NeRFBlock(background_kwargs)
self.num_ws += self.bg_nerf.num_ws
else:
self.bg_nerf = None
# ---------------------------------- Build Networks ---------------------------------------- -#
# input encoding (optional)
if self.I is not None:
assert self.V.no_background, "does not support background field"
nerf_inputs = self.I.build_network(w_dim, **block_kwargs)
self.input_block_names = ['in_' + i['name'] for i in nerf_inputs]
self.num_ws += sum([i['num_ws'] for i in nerf_inputs])
for i in nerf_inputs:
setattr(self, 'in_' + i['name'], i['block'])
# upsampler
upsamplers = self.U.build_network(w_dim, self.fg_nerf.rgb_out_dim, **block_kwargs)
if len(upsamplers) > 0:
self.block_names = [u['name'] for u in upsamplers]
self.num_ws += sum([u['num_ws'] for u in upsamplers])
for u in upsamplers:
setattr(self, u['name'], u['block'])
# data-sampler
if cam_based_sampler:
self.sampler = (CameraQueriedSampler, {'camera_module': self.C})
# other hyperameters
self.progressive_growing = progressive
self.progressive_nerf_only = prog_nerf_only
assert not (self.progressive_growing and self.progressive_nerf_only)
if prog_nerf_only:
assert (self.n_reg_samples == 0) and (not reg_full), "does not support regularization"
self.register_buffer("alpha", torch.scalar_tensor(-1))
if predict_camera:
self.num_ws += 1 # additional w for camera
self.freeze_nerf = freeze_nerf
self.steps = None
self.interp_steps = [int(a) for a in interp_steps.split(':')] \
if interp_steps is not None else None #TODO two-stage training trick (from EG3d paper, not working so far)
def set_alpha(self, alpha):
if alpha is not None:
self.alpha.fill_(alpha)
def set_steps(self, steps):
if hasattr(self, "steps"):
if self.steps is not None:
self.steps = self.steps * 0 + steps / 1000.0
else:
self.steps = steps / 1000.0
def forward(self, ws, **block_kwargs):
block_ws, imgs, rand_imgs = [], [], []
batch_size = block_kwargs['batch_size'] = ws.size(0)
n_levels, end_l, _, target_res = self.get_current_resolution()
# save ws for potential usage.
block_kwargs['ws_detach'] = ws.detach()
# cameras, background codes
if self.camera_condition is not None:
cam_cond = self.get_camera_samples(batch_size, ws, block_kwargs, gen_cond=True)
if "camera_matrices" not in block_kwargs:
block_kwargs['camera_matrices'] = self.get_camera_samples(batch_size, ws, block_kwargs)
if (self.camera_condition is not None) and (cam_cond is None):
cam_cond = block_kwargs['camera_matrices']
block_kwargs['theta'] = self.C.get_roll(ws, self.training, **block_kwargs)
# get latent codes instead of style vectors (used in GRAF & GIRAFFE)
if "latent_codes" not in block_kwargs:
block_kwargs["latent_codes"] = self.get_latent_codes(batch_size, device=ws.device)
if (self.camera_condition is not None) and (self.camera_condition == 'full'):
cam_cond = normalize_2nd_moment(self.camera_map(None, cam_cond[1].reshape(-1, 16)))
ws = ws * cam_cond[:, None, :]
# generate features for input points (Optional, default not use)
with torch.autograd.profiler.record_function('nerf_input_feats'):
if self.I is not None:
ws = ws.to(torch.float32)
blocks = [getattr(self, name) for name in self.input_block_names]
block_ws = self.I.forward_ws_split(ws, blocks)
nerf_input_feats = self.I.forward_network(blocks, block_ws, **block_kwargs)
ws = ws[:, self.I.num_ws:]
else:
nerf_input_feats = None
# prepare for NeRF part
with torch.autograd.profiler.record_function('prepare_nerf_path'):
if self.progressive_nerf_only and (self.alpha > -1):
cur_resolution = int(self.resolution_start * (1 - self.alpha) + self.resolution_vol * self.alpha)
elif (end_l == 0) or len(self.block_resolutions) == 0:
cur_resolution = self.resolution_start
else:
cur_resolution = self.block_resolutions[end_l-1]
vol_resolution = self.resolution_vol if self.resolution_vol < cur_resolution else cur_resolution
nerf_resolution = vol_resolution
if (self.interp_steps is not None) and (self.steps is not None) and (self.alpha > 0): # interpolation trick (maybe work??)
if self.steps < self.interp_steps[0]:
nerf_resolution = vol_resolution // 2
elif self.steps < self.interp_steps[1]:
nerf_resolution = (self.steps - self.interp_steps[0]) / (self.interp_steps[1] - self.interp_steps[0])
nerf_resolution = int(nerf_resolution * (vol_resolution / 2) + vol_resolution / 2)
vol_pixels, tgt_pixels = self.C.prepare_pixels(self.img_resolution, cur_resolution, nerf_resolution, **block_kwargs)
if (end_l > 0) and (self.n_reg_samples > 0) and self.training:
rand_pixels, rand_indexs = self.C.prepare_pixels_regularization(tgt_pixels, self.n_reg_samples)
else:
rand_pixels, rand_indexs = None, None
if self.fg_nerf.num_ws > 0: # use style vector instead of latent codes?
block_kwargs["styles"] = ws[:, :self.fg_nerf.num_ws]
ws = ws[:, self.fg_nerf.num_ws:]
if (self.bg_nerf is not None) and self.bg_nerf.num_ws > 0:
block_kwargs["styles_bg"] = ws[:, :self.bg_nerf.num_ws]
ws = ws[:, self.bg_nerf.num_ws:]
# volume rendering
with torch.autograd.profiler.record_function('nerf'):
if (rand_pixels is not None) and self.training:
vol_pixels = (vol_pixels, rand_pixels)
outputs = self.V.forward_volume_rendering(
nerf_modules=(self.fg_nerf, self.bg_nerf),
vol_pixels=vol_pixels,
nerf_input_feats=nerf_input_feats,
return_full=self.reg_full,
alpha=self.alpha,
**block_kwargs)
reg_loss = outputs.get('reg_loss', {})
x, img, _ = self.V.post_process_outputs(outputs['full_out'], self.freeze_nerf)
if nerf_resolution < vol_resolution:
x = F.interpolate(x, vol_resolution, mode='bilinear', align_corners=False)
img = F.interpolate(img, vol_resolution, mode='bilinear', align_corners=False)
# early output from the network (used for visualization)
if 'meshes' in block_kwargs:
from dnnlib.geometry import render_mesh
block_kwargs['voxel_noise'] = render_mesh(block_kwargs['meshes'], block_kwargs["camera_matrices"])
if (len(self.U.block_resolutions) == 0) or \
(x is None) or \
(block_kwargs.get("render_option", None) is not None and
'early' in block_kwargs['render_option']):
if 'value' in block_kwargs['render_option']:
img = x[:,:3]
img = img / img.norm(dim=1, keepdim=True)
assert img is not None, "need to add RGB"
return img
if 'rand_out' in outputs:
x_rand, img_rand, rand_probs = self.V.post_process_outputs(outputs['rand_out'], self.freeze_nerf)
lh, lw = dividable(rand_probs.size(1))
rand_imgs += [img_rand]
# append low-resolution image
if img is not None:
if self.progressive_nerf_only and (img.size(-1) < self.resolution_vol):
x = upsample(x, self.resolution_vol)
img = upsample(img, self.resolution_vol)
block_kwargs['img_nerf'] = img
# Use 2D upsampler
if (cur_resolution > self.resolution_vol) or self.progressive_nerf_only:
imgs += [img]
if (self.camera_condition is not None) and (self.camera_condition != 'full'):
cam_cond = normalize_2nd_moment(self.camera_map(None, cam_cond[1].reshape(-1, 16)))
ws = ws * cam_cond[:, None, :]
# 2D feature map upsampling
with torch.autograd.profiler.record_function('upsampling'):
ws = ws.to(torch.float32)
blocks = [getattr(self, name) for name in self.block_names]
block_ws = self.U.forward_ws_split(ws, blocks)
imgs += self.U.forward_network(blocks, block_ws, x, img, target_res, self.alpha, **block_kwargs)
img = imgs[-1]
if len(rand_imgs) > 0: # nerf path regularization
rand_imgs += self.U.forward_network(
blocks, block_ws, x_rand, img_rand, target_res, self.alpha, skip_up=True, **block_kwargs)
img_rand = rand_imgs[-1]
with torch.autograd.profiler.record_function('rgb_interp'):
if (self.alpha > -1) and (not self.progressive_nerf_only) and self.progressive_growing:
if (self.alpha < 1) and (self.alpha > 0):
alpha, _ = math.modf(self.alpha * n_levels)
img_nerf = imgs[-2]
if img_nerf.size(-1) < img.size(-1): # need upsample image
img_nerf = upsample(img_nerf, 2 * img_nerf.size(-1))
img = img_nerf * (1 - alpha) + img * alpha
if len(rand_imgs) > 0:
img_rand = rand_imgs[-2] * (1 - alpha) + img_rand * alpha
with torch.autograd.profiler.record_function('nerf_path_reg_loss'):
if len(rand_imgs) > 0: # and self.training: # random pixel regularization??
assert self.progressive_growing
if self.reg_full: # aggregate RGB in the end.
lh, lw = img_rand.size(2) // self.n_reg_samples, img_rand.size(3) // self.n_reg_samples
img_rand = rearrange(img_rand, 'b d (l h) (m w) -> b d (l m) h w', l=lh, m=lw)
img_rand = (img_rand * rand_probs[:, None]).sum(2)
if self.V.white_background:
img_rand = img_rand + (1 - rand_probs.sum(1, keepdim=True))
rand_indexs = repeat(rand_indexs, 'b n -> b d n', d=img_rand.size(1))
img_ff = rearrange(rearrange(img, 'b d l h -> b d (l h)').gather(2, rand_indexs), 'b d (l h) -> b d l h', l=self.n_reg_samples)
def l2(img_ff, img_nf):
batch_size = img_nf.size(0)
return ((img_ff - img_nf) ** 2).sum(1).reshape(batch_size, -1).mean(-1, keepdim=True)
reg_loss['reg_loss'] = l2(img_ff, img_rand) * 2.0
if len(reg_loss) > 0:
for key in reg_loss:
block_kwargs[key] = reg_loss[key]
if self.rectangular_crop is not None: # in case rectangular
h, w = self.rectangular_crop
c = int(img.size(-1) * (1 - h / w) / 2)
mask = torch.ones_like(img)
mask[:, :, c:-c, :] = 0
img = img.masked_fill(mask > 0, -1)
block_kwargs['img'] = img
return block_kwargs
def get_current_resolution(self):
n_levels = len(self.block_resolutions)
if not self.progressive_growing:
end_l = n_levels
elif (self.alpha > -1) and (not self.progressive_nerf_only):
if self.alpha == 0:
end_l = 0
elif self.alpha == 1:
end_l = n_levels
elif self.alpha < 1:
end_l = int(math.modf(self.alpha * n_levels)[1] + 1)
else:
end_l = n_levels
target_res = self.resolution_start if end_l <= 0 else self.block_resolutions[end_l-1]
before_res = self.resolution_start if end_l <= 1 else self.block_resolutions[end_l-2]
return n_levels, end_l, before_res, target_res
def get_latent_codes(self, batch_size=32, device="cpu", tmp=1.):
z_dim, z_dim_bg = self.z_dim, self.z_dim_bg
def sample_z(*size):
torch.randn(*size).to(device)
return torch.randn(*size).to(device) * tmp
z_shape_obj = sample_z(batch_size, z_dim)
z_app_obj = sample_z(batch_size, z_dim)
z_shape_bg = sample_z(batch_size, z_dim_bg) if not self.V.no_background else None
z_app_bg = sample_z(batch_size, z_dim_bg) if not self.V.no_background else None
return z_shape_obj, z_app_obj, z_shape_bg, z_app_bg
def get_camera(self, *args, **kwargs): # for compitability
return self.C.get_camera(*args, **kwargs)
def get_camera_samples(self, batch_size, ws, block_kwargs, gen_cond=False):
if gen_cond: # camera condition for generator (? a special variant)
if ('camera_matrices' in block_kwargs) and (not self.training): # this is for rendering
camera_matrices = self.get_camera(batch_size, device=ws.device, mode=[0.5, 0.5, 0.5])
elif self.training and (np.random.rand() > 0.5):
camera_matrices = self.get_camera(batch_size, device=ws.device)
else:
camera_matrices = None
elif 'camera_mode' in block_kwargs:
camera_matrices = self.get_camera(batch_size, device=ws.device, mode=block_kwargs["camera_mode"])
else:
if self.predict_camera:
rand_mode = ws.new_zeros(ws.size(0), 2)
if self.C.gaussian_camera:
rand_mode = rand_mode.normal_()
pred_mode = self.camera_generator(rand_mode)
else:
rand_mode = rand_mode.uniform_()
pred_mode = self.camera_generator(rand_mode - 0.5)
mode = rand_mode if self.alpha <= 0 else rand_mode + pred_mode * 0.1
camera_matrices = self.get_camera(batch_size, device=ws.device, mode=mode)
else:
camera_matrices = self.get_camera(batch_size, device=ws.device)
if ('camera_RT' in block_kwargs) or ('camera_UV' in block_kwargs):
camera_matrices = list(camera_matrices)
camera_mask = torch.rand(batch_size).type_as(camera_matrices[1]).lt(self.alpha)
if 'camera_RT' in block_kwargs:
image_RT = block_kwargs['camera_RT'].reshape(-1, 4, 4)
camera_matrices[1][camera_mask] = image_RT[camera_mask] # replacing with inferred cameras
else: # sample uv instead of sampling the extrinsic matrix
image_UV = block_kwargs['camera_UV']
image_RT = self.get_camera(batch_size, device=ws.device, mode=image_UV, force_uniform=True)[1]
camera_matrices[1][camera_mask] = image_RT[camera_mask] # replacing with inferred cameras
camera_matrices[2][camera_mask] = image_UV[camera_mask] # replacing with inferred uvs
camera_matrices = tuple(camera_matrices)
return camera_matrices
@persistence.persistent_class
class Discriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 1, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 0, # Use FP16 for the N highest resolutions.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
lowres_head = None, # add a low-resolution discriminator head
dual_discriminator = False, # add low-resolution (NeRF) image
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
camera_kwargs = {}, # Arguments for Camera predictor and condition (optional, refactoring)
upsample_type = 'default',
progressive = False,
resize_real_early = False, # Peform resizing before the training loop
enable_ema = False, # Additionally save an EMA checkpoint
**unused
):
super().__init__()
# setup parameters
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
self.architecture = architecture
self.lowres_head = lowres_head
self.dual_discriminator = dual_discriminator
self.upsample_type = upsample_type
self.progressive = progressive
self.resize_real_early = resize_real_early
self.enable_ema = enable_ema
if self.progressive:
assert self.architecture == 'skip', "not supporting other types for now."
channel_base = int(channel_base * 32768)
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
# camera prediction module
self.camera_kwargs = EasyDict(
predict_camera=False,
predict_styles=False,
camera_type='3d',
camera_encoder=True,
camera_encoder_progressive=False,
camera_disc=True)
## ------ for compitibility ------- #
self.camera_kwargs.predict_camera = unused.get('predict_camera', False)
self.camera_kwargs.camera_type = '9d' if unused.get('predict_9d_camera', False) else '3d'
self.camera_kwargs.camera_disc = not unused.get('no_camera_condition', False)
self.camera_kwargs.camera_encoder = unused.get('saperate_camera', False)
self.camera_kwargs.update(camera_kwargs)
## ------ for compitibility ------- #
self.c_dim = c_dim
if self.camera_kwargs.predict_camera:
if self.camera_kwargs.camera_type == '3d':
self.c_dim = out_dim = 3 # (u, v) on the sphere
elif self.camera_kwargs.camera_type == '9d':
self.c_dim, out_dim = 16, 9
elif self.camera_kwargs.camera_type == '16d':
self.c_dim = out_dim = 16
else:
raise NotImplementedError('Wrong camera type')
if not self.camera_kwargs.camera_disc:
self.c_dim = c_dim
self.projector = EqualConv2d(channels_dict[4], out_dim, 4, padding=0, bias=False)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if self.c_dim == 0:
cmap_dim = 0
if self.c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=self.c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
if self.camera_kwargs.predict_styles:
self.w_dim, self.num_ws = self.camera_kwargs.w_dim, self.camera_kwargs.num_ws
self.projector_styles = EqualConv2d(channels_dict[4], self.w_dim * self.num_ws, 4, padding=0, bias=False)
self.mapping_styles = MappingNetwork(z_dim=0, c_dim=self.w_dim * self.num_ws, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
# main discriminator blocks
common_kwargs = dict(img_channels=self.img_channels, architecture=architecture, conv_clamp=conv_clamp)
def build_blocks(layer_name='b', low_resolution=False):
cur_layer_idx = 0
block_resolutions = self.block_resolutions
if low_resolution:
block_resolutions = [r for r in self.block_resolutions if r <= self.lowres_head]
for res in block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'{layer_name}{res}', block)
cur_layer_idx += block.num_layers
build_blocks(layer_name='b') # main blocks
if self.dual_discriminator:
build_blocks(layer_name='dual', low_resolution=True)
if self.camera_kwargs.camera_encoder:
build_blocks(layer_name='c', low_resolution=(not self.camera_kwargs.camera_encoder_progressive))
# final output module
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
self.register_buffer("alpha", torch.scalar_tensor(-1))
def set_alpha(self, alpha):
if alpha is not None:
self.alpha = self.alpha * 0 + alpha
def set_resolution(self, res):
self.curr_status = res
def forward_blocks_progressive(self, img, mode="disc", **block_kwargs):
# mode from ['disc', 'dual_disc', 'cam_enc']
if isinstance(img, dict):
img = img['img']
block_resolutions, alpha, lowres_head = self.get_block_resolutions(img)
layer_name, progressive = 'b', self.progressive
if mode == "cam_enc":
assert self.camera_kwargs.predict_camera and self.camera_kwargs.camera_encoder
layer_name = 'c'
if not self.camera_kwargs.camera_encoder_progressive:
block_resolutions, progressive = [r for r in self.block_resolutions if r <= self.lowres_head], False
img = downsample(img, self.lowres_head)
elif mode == 'dual_disc':
layer_name = 'dual'
block_resolutions, progressive = [r for r in self.block_resolutions if r <= self.lowres_head], False
img0 = downsample(img, img.size(-1) // 2) if \
progressive and (self.lowres_head is not None) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0) \
else None
x = None if (not progressive) or (block_resolutions[0] == self.img_resolution) \
else getattr(self, f'{layer_name}{block_resolutions[0]}').fromrgb(img)
for res in block_resolutions:
block = getattr(self, f'{layer_name}{res}')
if (lowres_head == res) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0):
if progressive:
if self.architecture == 'skip':
img = img * alpha + img0 * (1 - alpha)
x = x * alpha + block.fromrgb(img0) * (1 - alpha)
x, img = block(x, img, **block_kwargs)
output = {}
if (mode == 'cam_enc') or \
(mode == 'disc' and self.camera_kwargs.predict_camera and (not self.camera_kwargs.camera_encoder)):
c = self.projector(x)[:,:,0,0]
if self.camera_kwargs.camera_type == '9d':
c = camera_9d_to_16d(c)
output['cam'] = c
if self.camera_kwargs.predict_styles:
w = self.projector_styles(x)[:,:,0,0]
output['styles'] = w
return output, x, img
def get_camera_loss(self, RT=None, UV=None, c=None):
if (RT is None) or (UV is None):
return None
if self.camera_kwargs.camera_type == '3d': # UV has higher priority?
return F.mse_loss(UV, c)
else:
return F.smooth_l1_loss(RT.reshape(RT.size(0), -1), c) * 10
def get_styles_loss(self, WS=None, w=None):
if WS is None:
return None
return F.mse_loss(WS, w) * 0.1
def get_block_resolutions(self, input_img):
block_resolutions = self.block_resolutions
lowres_head = self.lowres_head
alpha = self.alpha
img_res = input_img.size(-1)
if self.progressive and (self.lowres_head is not None) and (self.alpha > -1):
if (self.alpha < 1) and (self.alpha > 0):
try:
n_levels, _, before_res, target_res = self.curr_status
alpha, index = math.modf(self.alpha * n_levels)
index = int(index)
except Exception as e: # TODO: this is a hack, better to save status as buffers.
before_res = target_res = img_res
if before_res == target_res: # no upsampling was used in generator, do not increase the discriminator
alpha = 0
block_resolutions = [res for res in self.block_resolutions if res <= target_res]
lowres_head = before_res
elif self.alpha == 0:
block_resolutions = [res for res in self.block_resolutions if res <= lowres_head]
return block_resolutions, alpha, lowres_head
def forward(self, inputs, c=None, aug_pipe=None, return_camera=False, **block_kwargs):
if not isinstance(inputs, dict):
inputs = {'img': inputs}
img = inputs['img']
# this is to handle real images
block_resolutions, alpha, _ = self.get_block_resolutions(img)
if img.size(-1) > block_resolutions[0]:
img = downsample(img, block_resolutions[0])
if self.dual_discriminator and ('img_nerf' not in inputs):
inputs['img_nerf'] = downsample(img, self.lowres_head)
RT = inputs['camera_matrices'][1].detach() if 'camera_matrices' in inputs else None
UV = inputs['camera_matrices'][2].detach() if 'camera_matrices' in inputs else None
WS = inputs['ws_detach'].reshape(inputs['batch_size'], -1) if 'ws_detach' in inputs else None
no_condition = (c.size(-1) == 0)
# forward separate camera encoder, which can also be progressive...
if self.camera_kwargs.camera_encoder:
out_camenc, _, _ = self.forward_blocks_progressive(img, mode='cam_enc', **block_kwargs)
if no_condition and ('cam' in out_camenc):
c, camera_loss = out_camenc['cam'], self.get_camera_loss(RT, UV, out_camenc['cam'])
if 'styles' in out_camenc:
w, styles_loss = out_camenc['styles'], self.get_styles_loss(WS, out_camenc['styles'])
no_condition = False
# forward another dual discriminator only for low resolution images
if self.dual_discriminator:
_, x_nerf, img_nerf = self.forward_blocks_progressive(inputs['img_nerf'], mode='dual_disc', **block_kwargs)
# if applied data augmentation for discriminator
if aug_pipe is not None:
img = aug_pipe(img)
# perform main discriminator block
out_disc, x, img = self.forward_blocks_progressive(img, mode='disc', **block_kwargs)
if no_condition and ('cam' in out_disc):
c, camera_loss = out_disc['cam'], self.get_camera_loss(RT, UV, out_disc['cam'])
if 'styles' in out_disc:
w, styles_loss = out_disc['styles'], self.get_styles_loss(WS, out_disc['styles'])
no_condition = False
# camera conditional discriminator
cmap = None
if self.c_dim > 0:
cc = c.clone().detach()
cmap = self.mapping(None, cc)
if self.camera_kwargs.predict_styles:
ww = w.clone().detach()
cmap = [cmap] + [self.mapping_styles(None, ww)]
logits = self.b4(x, img, cmap)
if self.dual_discriminator:
logits = torch.cat([logits, self.b4(x_nerf, img_nerf, cmap)], 0)
outputs = {'logits': logits}
if self.camera_kwargs.predict_camera and (camera_loss is not None):
outputs['camera_loss'] = camera_loss
if self.camera_kwargs.predict_styles and (styles_loss is not None):
outputs['styles_loss'] = styles_loss
if return_camera:
outputs['camera'] = c
return outputs
@persistence.persistent_class
class Encoder(torch.nn.Module):
def __init__(self,
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
bottleneck_factor = 2, # By default, the same as discriminator we use 4x4 features
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 1, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 0, # Use FP16 for the N highest resolutions.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping
lowres_head = None, # add a low-resolution discriminator head
block_kwargs = {}, # Arguments for DiscriminatorBlock.
model_kwargs = {},
upsample_type = 'default',
progressive = False,
**unused
):
super().__init__()
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, bottleneck_factor, -1)]
self.architecture = architecture
self.lowres_head = lowres_head
self.upsample_type = upsample_type
self.progressive = progressive
self.model_kwargs = model_kwargs
self.output_mode = model_kwargs.get('output_mode', 'styles')
if self.progressive:
assert self.architecture == 'skip', "not supporting other types for now."
self.predict_camera = model_kwargs.get('predict_camera', False)
channel_base = int(channel_base * 32768)
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
common_kwargs = dict(img_channels=self.img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
# this is an encoder
if self.output_mode in ['W', 'W+', 'None']:
self.num_ws = self.model_kwargs.get('num_ws', 0)
self.n_latents = self.num_ws if self.output_mode == 'W+' else (0 if self.output_mode == 'None' else 1)
self.w_dim = self.model_kwargs.get('w_dim', 512)
self.add_dim = self.model_kwargs.get('add_dim', 0) if not self.predict_camera else 9
self.out_dim = self.w_dim * self.n_latents + self.add_dim
assert self.out_dim > 0, 'output dimenstion has to be larger than 0'
assert self.block_resolutions[-1] // 2 == 4, "make sure the last resolution is 4x4"
self.projector = EqualConv2d(channels_dict[4], self.out_dim, 4, padding=0, bias=False)
else:
raise NotImplementedError
self.register_buffer("alpha", torch.scalar_tensor(-1))
def set_alpha(self, alpha):
if alpha is not None:
self.alpha.fill_(alpha)
def set_resolution(self, res):
self.curr_status = res
def get_block_resolutions(self, input_img):
block_resolutions = self.block_resolutions
lowres_head = self.lowres_head
alpha = self.alpha
img_res = input_img.size(-1)
if self.progressive and (self.lowres_head is not None) and (self.alpha > -1):
if (self.alpha < 1) and (self.alpha > 0):
try:
n_levels, _, before_res, target_res = self.curr_status
alpha, index = math.modf(self.alpha * n_levels)
index = int(index)
except Exception as e: # TODO: this is a hack, better to save status as buffers.
before_res = target_res = img_res
if before_res == target_res:
# no upsampling was used in generator, do not increase the discriminator
alpha = 0
block_resolutions = [res for res in self.block_resolutions if res <= target_res]
lowres_head = before_res
elif self.alpha == 0:
block_resolutions = [res for res in self.block_resolutions if res <= lowres_head]
return block_resolutions, alpha, lowres_head
def forward(self, inputs, **block_kwargs):
if isinstance(inputs, dict):
img = inputs['img']
else:
img = inputs
block_resolutions, alpha, lowres_head = self.get_block_resolutions(img)
if img.size(-1) > block_resolutions[0]:
img = downsample(img, block_resolutions[0])
if self.progressive and (self.lowres_head is not None) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0):
img0 = downsample(img, img.size(-1) // 2)
x = None if (not self.progressive) or (block_resolutions[0] == self.img_resolution) \
else getattr(self, f'b{block_resolutions[0]}').fromrgb(img)
for res in block_resolutions:
block = getattr(self, f'b{res}')
if (lowres_head == res) and (self.alpha > -1) and (self.alpha < 1) and (alpha > 0):
if self.architecture == 'skip':
img = img * alpha + img0 * (1 - alpha)
if self.progressive:
x = x * alpha + block.fromrgb(img0) * (1 - alpha) # combine from img0
x, img = block(x, img, **block_kwargs)
outputs = {}
if self.output_mode in ['W', 'W+', 'None']:
out = self.projector(x)[:,:,0,0]
if self.predict_camera:
out, out_cam_9d = out[:, 9:], out[:, :9]
outputs['camera'] = camera_9d_to_16d(out_cam_9d)
if self.output_mode == 'W+':
out = rearrange(out, 'b (n s) -> b n s', n=self.num_ws, s=self.w_dim)
elif self.output_mode == 'W':
out = repeat(out, 'b s -> b n s', n=self.num_ws)
else:
out = None
outputs['ws'] = out
return outputs
# ------------------------------------------------------------------------------------------- #
class CameraQueriedSampler(torch.utils.data.Sampler):
def __init__(self, dataset, camera_module, nearest_neighbors=400, rank=0, num_replicas=1, device='cpu', seed=0):
assert len(dataset) > 0
super().__init__(dataset)
self.dataset = dataset
self.dataset_cameras = None
self.seed = seed
self.rank = rank
self.device = device
self.num_replicas = num_replicas
self.C = camera_module
self.K = nearest_neighbors
self.B = 1000
def update_dataset_cameras(self, estimator):
import tqdm
from torch_utils.distributed_utils import gather_list_and_concat
output = torch.ones(len(self.dataset), 16).to(self.device)
with torch.no_grad():
predicted_cameras, image_indices, bsz = [], [], 64
item_subset = [(i * self.num_replicas + self.rank) % len(self.dataset) for i in range((len(self.dataset) - 1) // self.num_replicas + 1)]
for _, (images, _, indices) in tqdm.tqdm(enumerate(torch.utils.data.DataLoader(
dataset=copy.deepcopy(self.dataset), sampler=item_subset, batch_size=bsz)),
total=len(item_subset)//bsz+1, colour='red', desc=f'Estimating camera poses for the training set at'):
predicted_cameras += [estimator(images.to(self.device).to(torch.float32) / 127.5 - 1)]
image_indices += [indices.to(self.device).long()]
predicted_cameras = torch.cat(predicted_cameras, 0)
image_indices = torch.cat(image_indices, 0)
if self.num_replicas > 1:
predicted_cameras = gather_list_and_concat(predicted_cameras)
image_indices = gather_list_and_concat(image_indices)
output[image_indices] = predicted_cameras
self.dataset_cameras = output
def get_knn_cameras(self):
return torch.norm(
self.dataset_cameras.unsqueeze(1) -
self.C.get_camera(self.B, self.device)[0].reshape(1,self.B,16), dim=2, p=None
).topk(self.K, largest=False, dim=0)[1] # K x B
def __iter__(self):
order = np.arange(len(self.dataset))
rnd = np.random.RandomState(self.seed+self.rank)
while True:
if self.dataset_cameras is None:
rand_idx = rnd.randint(order.size)
yield rand_idx
else:
knn_idxs = self.get_knn_cameras()
for i in range(self.B):
rand_idx = rnd.randint(self.K)
yield knn_idxs[rand_idx, i].item()
|