File size: 13,187 Bytes
98847a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed37070
98847a8
ed37070
 
 
 
 
98847a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed37070
 
98847a8
ed37070
 
 
 
 
98847a8
 
ed37070
 
 
 
 
98847a8
 
ed37070
 
 
 
 
98847a8
 
ed37070
 
 
 
 
98847a8
 
ed37070
 
98847a8
ed37070
 
 
 
 
 
 
98847a8
 
 
 
 
 
 
 
 
 
 
 
 
 
ed37070
 
 
 
98847a8
ed37070
 
 
 
 
98847a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import ast
import re
from pathlib import Path

import requests


def group_files_by_index(file_paths, data_type="audio"):
    # Regular expression pattern to extract the key from each image path
    if data_type == "audio":
        pattern = r"audio_(\d+).(png|wav)"
    elif data_type == "video":
        pattern = r"video_(\d+).(png|mkv)"
    else:
        pattern = r"img_(\d+).png"
    # Dictionary to store the grouped files
    grouped_files = {}
    # Iterate over each file path
    for file_path in file_paths:
        # Extract the key using the regular expression pattern
        match = re.search(pattern, file_path)
        if match:
            key = int(match.group(1))

            # Add the file path to the corresponding group in the dictionary
            if key not in grouped_files:
                grouped_files[key] = []
            grouped_files[key].append(file_path)
    # Sort the dictionary by keys
    sorted_grouped_files = dict(sorted(grouped_files.items()))
    return sorted_grouped_files


def build_description(
    i, data_none, data_attack, quality_metrics=["psnr", "ssim", "lpips"]
):
    # TODO: handle this at data generation
    if isinstance(data_none["fake_det"], str):
        data_none["fake_det"] = ast.literal_eval(data_none["fake_det"])
    if isinstance(data_none["watermark_det"], str):
        data_none["watermark_det"] = ast.literal_eval(data_none["watermark_det"])

    if isinstance(data_attack["fake_det"], str):
        data_attack["fake_det"] = ast.literal_eval(data_attack["fake_det"])
    if isinstance(data_attack["watermark_det"], str):
        data_attack["watermark_det"] = ast.literal_eval(data_attack["watermark_det"])

    if i == 0:
        fake_det = data_none["fake_det"]

        return f"detected: {fake_det}"
    elif i == 1:
        # Fixed metrics
        det = data_none["watermark_det"]
        p_value = float(data_none["p_value"])
        bit_acc = data_none["bit_acc"]

        # Dynamic metrics
        metrics_output = []
        for metric in quality_metrics:
            value = float(data_none[metric])
            metrics_output.append(f"{metric}: {value:.2f}")

        # Fixed metrics output
        fixed_metrics_output = (
            f" detected: {det} p_value: {p_value:.2f} bit_acc: {bit_acc:.2f}"
        )

        # Combine all outputs
        return " ".join(metrics_output) + f"{fixed_metrics_output}"
    elif i == 2:
        fake_det = data_attack["fake_det"]

        return f"det: {fake_det}"
    elif i == 3:
        det = data_attack["watermark_det"]

        p_value = float(data_attack["p_value"])
        word_acc = data_attack["word_acc"]
        bit_acc = data_attack["bit_acc"]

        return f"word_acc: {word_acc:.2f} detected: {det} p_value: {p_value:.2f} bit_acc: {bit_acc:.2f}"


def build_infos(abs_path: Path, datatype: str, dataset_name: str, db_key: str):
    def generate_file_patterns(prefixes, extensions):
        indices = [0, 1, 3, 4, 5]
        return [
            f"{prefix}_{index:05d}.{ext}"
            for prefix in prefixes
            for index in indices
            for ext in extensions
        ]

    if datatype == "audio":
        quality_metrics = ["snr", "sisnr", "stoi", "pesq"]
        extensions = ["png", "wav"]
        datatype_abbr = "audio"
        eval_results_path = abs_path + f"{dataset_name}_1k/examples_eval_results.json"
    elif datatype == "image":
        quality_metrics = ["psnr", "ssim", "lpips"]
        extensions = ["png"]
        datatype_abbr = "img"
        eval_results_path = abs_path + f"{dataset_name}_1k/examples_eval_results.json"
    elif datatype == "video":
        quality_metrics = ["psnr", "ssim", "lpips", "msssim", "vmaf"]
        extensions = ["mkv"]
        datatype_abbr = "video"
        eval_results_path = abs_path + f"{dataset_name}/examples_eval_results.json"

    response = requests.get(eval_results_path)
    if response.status_code == 200:
        results_data = response.json()
    else:
        return {}

    dataset = results_data["eval"][db_key]

    prefixes = [
        f"attacked_{datatype_abbr}",
        f"attacked_wmd_{datatype_abbr}",
        f"{datatype_abbr}",
        f"wmd_{datatype_abbr}",
    ]

    file_patterns = generate_file_patterns(prefixes, extensions)

    infos = {}
    for model_name in dataset.keys():
        model_infos = {}

        default_attack_name = "none"
        if datatype == "audio":
            default_attack_name = "identity"
        elif datatype == "video":
            default_attack_name = "Identity"

        identity_attack_rows = dataset[model_name][default_attack_name]["default"]

        for attack_name, attack_variants_data in dataset[model_name].items():
            for attack_variant, attack_rows in attack_variants_data.items():
                if attack_variant == "default":
                    attack = attack_name
                else:
                    attack = f"{attack_name}_{attack_variant}"

                if len(attack_rows) == 0:
                    model_infos[attack] = []
                    continue

                if datatype == "video":
                    file_paths = [
                        f"{abs_path}{dataset_name}/examples/{datatype}/{model_name}/{attack}/{pattern}"
                        for pattern in file_patterns
                    ]
                else:
                    file_paths = [
                        f"{abs_path}{dataset_name}_1k/examples/{datatype}/{model_name}/{attack}/{pattern}"
                        for pattern in file_patterns
                    ]

                all_files = []

                for i, files in group_files_by_index(
                    file_paths,
                    data_type=datatype,
                ).items():
                    data_none = [e for e in identity_attack_rows if e["idx"] == i][0]
                    data_attack = [e for e in attack_rows if e["idx"] == i][0]

                    files = sorted(
                        [(f, Path(f).stem) for f in files], key=lambda x: x[1]
                    )
                    files = files[2:] + files[:2]

                    files = [
                        {
                            "image_url": f,
                            "description": f"{n}\n{build_description(i, data_none, data_attack, quality_metrics)}",
                            **(
                                {"audio_url": f.replace(".png", ".wav")}
                                if datatype == "audio" and f.endswith(".png")
                                else {}
                            ),
                        }
                        for i, (f, n) in enumerate(files)
                    ]

                    all_files.extend(files)

                model_infos[attack] = all_files

        infos[model_name] = model_infos

    return infos


def image_examples_tab(abs_path: Path):
    dataset_name = "coco_val2014"
    datatype = "image"
    db_key = "coco_val2014"

    image_infos = build_infos(
        abs_path,
        datatype=datatype,
        dataset_name=dataset_name,
        db_key=db_key,
    )

    # First combo box (category selection)
    # model_choice = gr.Dropdown(
    #     choices=list(image_infos.keys()),
    #     label="Select a Model",
    #     value=None,
    # )
    # Second combo box (subcategory selection)
    # Initialize with options from the first category by default
    # attack_choice = gr.Dropdown(
    #     choices=list(image_infos["wam"].keys()),
    #     label="Select an Attack",
    #     value=None,
    # )

    # # Gallery component to display images
    # gallery = gr.Gallery(
    #     label="Image Gallery",
    #     columns=4,
    #     rows=1,
    # )

    # Update options for the second combo box when the first one changes
    # def update_subcategories(selected_category):
    #     values = list(image_infos[selected_category].keys())
    #     values = [(v, v) for v in values]
    #     attack_choice.choices = values
    #     # return gr.Dropdown.update(choices=list(image_infos[selected_category].keys()))

    # # Function to load images based on selections from both combo boxes
    # def load_images(category, subcategory):
    #     return image_infos.get(category, {}).get(subcategory, [])

    # # Update gallery based on both combo box selections
    # model_choice.change(
    #     fn=update_subcategories, inputs=model_choice, outputs=attack_choice
    # )
    # attack_choice.change(
    #     fn=load_images, inputs=[model_choice, attack_choice], outputs=gallery
    # )
    return image_infos


def video_examples_tab(abs_path: Path):
    dataset_name = "sav_val_full"
    datatype = "video"
    db_key = "sa-v_sav_val_videos"

    image_infos = build_infos(
        abs_path,
        datatype=datatype,
        dataset_name=dataset_name,
        db_key=db_key,
    )

    return image_infos

    # First combo box (category selection)
    # model_choice = gr.Dropdown(
    #     choices=list(image_infos.keys()),
    #     label="Select a Model",
    #     value=None,
    # )
    # Second combo box (subcategory selection)
    # Initialize with options from the first category by default
    # attack_choice = gr.Dropdown(
    #     choices=list(image_infos["videoseal_0.0"].keys()),
    #     label="Select an Attack",
    #     value=None,
    # )

    # Gallery component to display images
    # gallery = gr.Gallery(
    #     label="Video Gallery",
    #     columns=4,
    #     rows=1,
    # )

    # Update options for the second combo box when the first one changes
    # def update_subcategories(selected_category):
    #     values = list(image_infos[selected_category].keys())
    #     values = [(v, v) for v in values]
    #     attack_choice.choices = values
    #     # return gr.Dropdown.update(choices=list(image_infos[selected_category].keys()))

    # Function to load images based on selections from both combo boxes
    # def load_images(category, subcategory):
    #     return image_infos.get(category, {}).get(subcategory, [])

    # # Update gallery based on both combo box selections
    # model_choice.change(
    #     fn=update_subcategories, inputs=model_choice, outputs=attack_choice
    # )
    # attack_choice.change(
    #     fn=load_images, inputs=[model_choice, attack_choice], outputs=gallery
    # )


def audio_examples_tab(abs_path: Path):
    dataset_name = "voxpopuli"
    datatype = "audio"
    db_key = "voxpopuli"

    audio_infos = build_infos(
        abs_path,
        datatype=datatype,
        dataset_name=dataset_name,
        db_key=db_key,
    )

    return audio_infos

    print(audio_infos)

    # First combo box (category selection)
    # model_choice = gr.Dropdown(
    #     choices=list(audio_infos.keys()),
    #     label="Select a Model",
    #     value=None,
    # )
    # Second combo box (subcategory selection)
    # Initialize with options from the first category by default
    attack_choice = gr.Dropdown(
        choices=list(audio_infos["audioseal"].keys()),
        label="Select an Attack",
        value=None,
    )

    # Gallery component to display images
    gallery = gr.Gallery(
        label="Image Gallery", columns=4, rows=1, object_fit="scale-down"
    )

    audio_player = gr.Audio(visible=False)
    audio_map_state = gr.State({})

    # Update options for the second combo box when the first one changes
    def update_subcategories(selected_category):
        values = list(audio_infos[selected_category].keys())
        values = [(v, v) for v in values]
        attack_choice.choices = values
        # return gr.Dropdown.update(choices=list(image_infos[selected_category].keys()))

    # Function to load images based on selections from both combo boxes
    def load_audios(category, subcategory):
        files = audio_infos.get(category, {}).get(subcategory, [])
        images = [f for f in files if f[0].endswith(".png")]
        audios = {f[0]: f[0].replace(".png", ".wav") for f in images}
        return images, audios

    def play_audio(selected_image, audios):
        image_path = selected_image["image"]["path"]
        audio_file = audios.get(image_path)
        return gr.update(value=audio_file, visible=audio_file is not None)

    def hide_audio_player():
        # Hide the audio player when the preview is closed
        return gr.update(visible=False)

    def get_selected_image(select_data: gr.SelectData, audios):
        if select_data is None:
            return gr.update(visible=False)
        selected_image = select_data.value
        return play_audio(selected_image, audios)

    # Update gallery based on both combo box selections
    model_choice.change(
        fn=update_subcategories, inputs=model_choice, outputs=attack_choice
    )
    attack_choice.change(
        fn=load_audios,
        inputs=[model_choice, attack_choice],
        outputs=[gallery, audio_map_state],
    )
    gallery.select(
        fn=get_selected_image,
        inputs=[audio_map_state],
        outputs=audio_player,
    )
    gallery.preview_close(
        fn=hide_audio_player,
        outputs=audio_player,
    )
    return gr.Column([model_choice, attack_choice, gallery, audio_player])