File size: 4,597 Bytes
98847a8
 
a1f1bf8
 
 
98847a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f1bf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import collections

import pandas as pd


def get_leaderboard_filters(df, categories) -> dict[str, list[str]]:
    # Create groups based on categories
    groups = collections.OrderedDict({"Overall": set()})
    for k in categories.values():
        groups[k] = set()

    default_selection = set()
    for k, v in categories.items():
        if v not in default_selection:
            for k in list(df.columns):
                if k.startswith(v):
                    groups["Overall"].add(k)
                    default_selection.add(k)

    for col in list(df.columns):
        for k in categories.keys():
            if col.startswith(k):
                cat = categories[k]
                groups[cat].add(col)
                break
    return groups, default_selection


def add_avg_as_columns(
    benchmark_df: pd.DataFrame, attack_scores: list[str]
) -> pd.DataFrame:
    # average over the attack variants (inequal number of attack variants)
    attack_avg_df = (
        benchmark_df[["model", "attack_name"] + attack_scores]
        .groupby(["model", "attack_name"])
        .agg(lambda x: x.mean(skipna=False))
        .reset_index(drop=False)
    )

    avg_df = (
        attack_avg_df[["model"] + attack_scores]
        .groupby(["model"])
        .agg(lambda x: x.mean(skipna=False))
        .reset_index(drop=False)
    )
    return avg_df.rename(columns={s: f"avg_{s}" for s in attack_scores})


def add_attack_variants_as_columns(
    df: pd.DataFrame, first_cols: list[str], attack_scores: list[str]
) -> pd.DataFrame:
    model_dfs = []
    for model in df.model.unique():
        model_view = df[df.model == model]
        attack_dfs = []

        for i, row in model_view.iterrows():
            attack_name = row["attack_name"]
            attack_variant = row["attack_variant"]

            g_df = model_view[
                (model_view.attack_name == attack_name)
                & (model_view.attack_variant == attack_variant)
            ]
            if (
                attack_name == "none"
                or attack_name == "identity"
                or attack_name == "Identity"
            ):
                g_df = g_df[["model"] + first_cols + attack_scores]
            else:
                g_df = g_df[attack_scores]

            if attack_variant == "default":
                prefix = attack_name
            else:
                prefix = f"{attack_name}_{attack_variant}"

            g_df = g_df.rename(columns={s: f"{prefix}_{s}" for s in attack_scores})
            attack_dfs.append(g_df.reset_index(drop=True))

        model_df = pd.concat(attack_dfs, axis=1)
        model_dfs.append(model_df)

    final_df = pd.concat(model_dfs, axis=0, ignore_index=True)
    first_cols_ = ["model"] + first_cols
    reordered_cols = first_cols_ + list(
        set(final_df.columns.tolist()) - set(first_cols_)
    )

    return final_df[reordered_cols]


def add_attack_categories_as_columns(
    benchmark_df: pd.DataFrame, attack_scores: list[str]
) -> pd.DataFrame:
    # average over the attack variants (inequal number of attack variants)
    attack_avg_df = (
        benchmark_df[["model", "attack_name", "cat"] + attack_scores]
        .groupby(["model", "attack_name", "cat"])
        .agg(lambda x: x.mean(skipna=False))
        .reset_index(drop=False)
    )
    df = (
        attack_avg_df.groupby(["model", "cat"])[attack_scores]
        .agg(lambda x: x.mean(skipna=False))
        .reset_index()
    )

    model_dfs = []

    for model in df.model.unique():
        cat_dfs = []

        for cat in df.cat.unique():
            if cat == "None":
                continue

            cat_df = df[(df.model == model) & (df.cat == cat)]
            cat_df = cat_df[attack_scores]
            cat_df = cat_df.rename(columns={s: f"{cat}_{s}" for s in attack_scores})

            cat_dfs.append(cat_df.reset_index(drop=True))

        model_dfs.append(pd.concat(cat_dfs, axis=1))

    return pd.concat(model_dfs, axis=0, ignore_index=True)


def get_old_format_dataframe(
    benchmark_df: pd.DataFrame, first_cols: list[str], attack_scores: list[str]
) -> pd.DataFrame:
    benchmark_df = benchmark_df.fillna("None")

    avg_df = add_avg_as_columns(benchmark_df, attack_scores)
    attack_variants_df = add_attack_variants_as_columns(
        benchmark_df, first_cols, attack_scores
    )
    categories_df = add_attack_categories_as_columns(benchmark_df, attack_scores)

    final_df = pd.concat([attack_variants_df, categories_df, avg_df], axis=1)
    final_df = final_df.loc[:, ~final_df.columns.duplicated()].copy()
    return final_df