File size: 3,806 Bytes
583456e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
# Modified by Feng Liang from
# https://github.com/MendelXu/zsseg.baseline/blob/master/datasets/prepare_coco_stuff_164k_sem_seg.py

import os
import os.path as osp
from pathlib import Path
import tqdm
from glob import glob

import numpy as np
from PIL import Image


full_clsID_to_trID = {
    0: 0,
    1: 1,
    2: 2,
    3: 3,
    4: 4,
    5: 5,
    6: 6,
    7: 7,
    8: 8,
    9: 9,
    10: 10,
    12: 11,
    13: 12,
    14: 13,
    15: 14,
    16: 15,
    17: 16,
    18: 17,
    19: 18,
    20: 19,
    21: 20,
    22: 21,
    23: 22,
    24: 23,
    26: 24,
    27: 25,
    30: 26,
    31: 27,
    32: 28,
    33: 29,
    34: 30,
    35: 31,
    36: 32,
    37: 33,
    38: 34,
    39: 35,
    40: 36,
    41: 37,
    42: 38,
    43: 39,
    45: 40,
    46: 41,
    47: 42,
    48: 43,
    49: 44,
    50: 45,
    51: 46,
    52: 47,
    53: 48,
    54: 49,
    55: 50,
    56: 51,
    57: 52,
    58: 53,
    59: 54,
    60: 55,
    61: 56,
    62: 57,
    63: 58,
    64: 59,
    66: 60,
    69: 61,
    71: 62,
    72: 63,
    73: 64,
    74: 65,
    75: 66,
    76: 67,
    77: 68,
    78: 69,
    79: 70,
    80: 71,
    81: 72,
    83: 73,
    84: 74,
    85: 75,
    86: 76,
    87: 77,
    88: 78,
    89: 79,
    91: 80,
    92: 81,
    93: 82,
    94: 83,
    95: 84,
    96: 85,
    97: 86,
    98: 87,
    99: 88,
    100: 89,
    101: 90,
    102: 91,
    103: 92,
    104: 93,
    105: 94,
    106: 95,
    107: 96,
    108: 97,
    109: 98,
    110: 99,
    111: 100,
    112: 101,
    113: 102,
    114: 103,
    115: 104,
    116: 105,
    117: 106,
    118: 107,
    119: 108,
    120: 109,
    121: 110,
    122: 111,
    123: 112,
    124: 113,
    125: 114,
    126: 115,
    127: 116,
    128: 117,
    129: 118,
    130: 119,
    131: 120,
    132: 121,
    133: 122,
    134: 123,
    135: 124,
    136: 125,
    137: 126,
    138: 127,
    139: 128,
    140: 129,
    141: 130,
    142: 131,
    143: 132,
    144: 133,
    145: 134,
    146: 135,
    147: 136,
    148: 137,
    149: 138,
    150: 139,
    151: 140,
    152: 141,
    153: 142,
    154: 143,
    155: 144,
    156: 145,
    157: 146,
    158: 147,
    159: 148,
    160: 149,
    161: 150,
    162: 151,
    163: 152,
    164: 153,
    165: 154,
    166: 155,
    167: 156,
    168: 157,
    169: 158,
    170: 159,
    171: 160,
    172: 161,
    173: 162,
    174: 163,
    175: 164,
    176: 165,
    177: 166,
    178: 167,
    179: 168,
    180: 169,
    181: 170,
    255: 255,
}

def convert_to_trainID(
    maskpath, out_mask_dir, is_train, clsID_to_trID=full_clsID_to_trID, suffix=""
):
    mask = np.array(Image.open(maskpath))
    mask_copy = np.ones_like(mask, dtype=np.uint8) * 255
    for clsID, trID in clsID_to_trID.items():
        mask_copy[mask == clsID] = trID
    seg_filename = (
        osp.join(out_mask_dir, "train2017" + suffix, osp.basename(maskpath))
        if is_train
        else osp.join(out_mask_dir, "val2017" + suffix, osp.basename(maskpath))
    )
    if len(np.unique(mask_copy)) == 1 and np.unique(mask_copy)[0] == 255:
        return
    Image.fromarray(mask_copy).save(seg_filename, "PNG")



if __name__ == "__main__":
    dataset_dir = Path(os.getenv("DETECTRON2_DATASETS", "datasets"))
    print('Caution: we only generate the training set!')
    coco_path = dataset_dir / "coco"
    mask_dir = coco_path / "stuffthingmaps"
    out_mask_dir = coco_path / "stuffthingmaps_detectron2"
    for name in ["train2017"]:
        os.makedirs((out_mask_dir / name), exist_ok=True)
        train_list = glob(osp.join(mask_dir, "train2017", "*.png"))
        for file in tqdm.tqdm(train_list):
            convert_to_trainID(file, out_mask_dir, is_train=True)