Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Copyright (c) Meta Platforms, Inc. All Rights Reserved | |
import multiprocessing as mp | |
import numpy as np | |
from PIL import Image | |
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
from detectron2.config import get_cfg | |
from detectron2.projects.deeplab import add_deeplab_config | |
from detectron2.data.detection_utils import read_image | |
from open_vocab_seg import add_ovseg_config | |
from open_vocab_seg.utils import VisualizationDemo, SAMVisualizationDemo | |
import gradio as gr | |
import gdown | |
# ckpt_url = 'https://drive.google.com/uc?id=1cn-ohxgXDrDfkzC1QdO-fi8IjbjXmgKy' | |
# output = './ovseg_swinbase_vitL14_ft_mpt.pth' | |
# gdown.download(ckpt_url, output, quiet=False) | |
def setup_cfg(config_file): | |
# load config from file and command-line arguments | |
cfg = get_cfg() | |
add_deeplab_config(cfg) | |
add_ovseg_config(cfg) | |
cfg.merge_from_file(config_file) | |
cfg.freeze() | |
return cfg | |
def inference(class_names, proposal_gen, granularity, input_img): | |
mp.set_start_method("spawn", force=True) | |
config_file = './ovseg_swinB_vitL_demo.yaml' | |
cfg = setup_cfg(config_file) | |
if proposal_gen == 'MaskFormer': | |
demo = VisualizationDemo(cfg) | |
elif proposal_gen == 'Segment_Anything': | |
demo = SAMVisualizationDemo(cfg, granularity, './sam_vit_h_4b8939.pth', './ovseg_clip_l_9a1909.pth') | |
class_names = class_names.split(',') | |
img = read_image(input_img, format="BGR") | |
_, visualized_output = demo.run_on_image(img, class_names) | |
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB') | |
examples = [['Saturn V, toys, desk, sunflowers, white roses, chrysanthemums, carnations, green dianthus', 'Segment_Anything', 0.8, './resources/demo_samples/sample_01.jpeg'], | |
['red bench, yellow bench, blue bench, brown bench, green bench, blue chair, yellow chair, green chair', 'Segment_Anything', 0.8, './resources/demo_samples/sample_04.png'], | |
['Saturn V, toys, blossom', 'MaskFormer', 1.0, './resources/demo_samples/sample_01.jpeg'], | |
['Oculus, Ukulele', 'MaskFormer', 1.0, './resources/demo_samples/sample_03.jpeg'], | |
['Golden gate, yacht', 'MaskFormer', 1.0, './resources/demo_samples/sample_02.jpeg'],] | |
output_labels = ['segmentation map'] | |
title = 'OVSeg (+ Segment_Anything)' | |
description = """ | |
[NEW!] We incorperate OVSeg CLIP w/ Segment_Anything, enabling SAM's text prompts. | |
Gradio Demo for Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP. \n | |
OVSeg could perform open vocabulary segmentation, you may input more classes (seperate by comma). You may click on of the examples or upload your own image. \n | |
It might take some time to process. Cheers! | |
<p>(Colab only supports MaskFormer proposal generator) Don't want to wait in queue? <a href="https://colab.research.google.com/drive/1O4Ain5uFZNcQYUmDTG92DpEGCatga8K5?usp=sharing"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p> | |
""" | |
article = """ | |
<p style='text-align: center'> | |
<a href='https://arxiv.org/abs/2210.04150' target='_blank'> | |
Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP | |
</a> | |
| | |
<a href='https://github.com/facebookresearch/ov-seg' target='_blank'>Github Repo</a></p> | |
""" | |
gr.Interface( | |
inference, | |
inputs=[ | |
gr.inputs.Textbox( | |
lines=1, placeholder=None, default='', label='class names'), | |
gr.inputs.Radio(["Segment_Anything", "MaskFormer"], label="Proposal generator", default="Segment_Anything"), | |
gr.inputs.Slider(0, 1.0, 0.8, label="For Segment_Anything, Granularity of masks from 0 (most coarse) to 1 (most precise)"), | |
gr.inputs.Image(type='filepath'), | |
], | |
outputs=gr.outputs.Image(label='segmentation map'), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples).launch(enable_queue=True) | |