Spaces:
Runtime error
Runtime error
JeffLiang
commited on
Commit
•
0e0710e
1
Parent(s):
3b51872
update more examples
Browse files
app.py
CHANGED
@@ -53,12 +53,12 @@ def inference(class_names, proposal_gen, granularity, input_img):
|
|
53 |
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
|
54 |
|
55 |
|
56 |
-
examples = [['Saturn V, toys, desk, sunflowers, white roses, chrysanthemums, carnations, green dianthus', 'Segment_Anything', 0.8, './resources/demo_samples/sample_01.jpeg'],
|
57 |
-
['red bench, yellow bench, blue bench, brown bench, green bench, blue chair, yellow chair, green chair', 'Segment_Anything', 0.8, './resources/demo_samples/sample_04.png'],
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
]
|
62 |
output_labels = ['segmentation map']
|
63 |
|
64 |
title = 'OVSeg (+ Segment_Anything)'
|
@@ -83,11 +83,11 @@ Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
|
|
83 |
gr.Interface(
|
84 |
inference,
|
85 |
inputs=[
|
86 |
-
gr.
|
87 |
lines=1, placeholder=None, default='', label='class names'),
|
88 |
-
gr.
|
89 |
-
gr.
|
90 |
-
gr.
|
91 |
],
|
92 |
outputs=gr.outputs.Image(label='segmentation map'),
|
93 |
title=title,
|
|
|
53 |
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
|
54 |
|
55 |
|
56 |
+
examples = [['Saturn V, toys, desk, wall, sunflowers, white roses, chrysanthemums, carnations, green dianthus', 'Segment_Anything', 0.8, './resources/demo_samples/sample_01.jpeg'],
|
57 |
+
['red bench, yellow bench, blue bench, brown bench, green bench, blue chair, yellow chair, green chair, brown chair, yellow square painting, barrel, buddha statue', 'Segment_Anything', 0.8, './resources/demo_samples/sample_04.png'],
|
58 |
+
['pillow, pipe, sweater, shirt, jeans jacket, shoes, cabinet, handbag, photo frame', 'Segment_Anything', 0.8, './resources/demo_samples/sample_05.png'],
|
59 |
+
['Saturn V, toys, blossom', 'MaskFormer', 1.0, './resources/demo_samples/sample_01.jpeg'],
|
60 |
+
['Oculus, Ukulele', 'MaskFormer', 1.0, './resources/demo_samples/sample_03.jpeg'],
|
61 |
+
['Golden gate, yacht', 'MaskFormer', 1.0, './resources/demo_samples/sample_02.jpeg'],]
|
62 |
output_labels = ['segmentation map']
|
63 |
|
64 |
title = 'OVSeg (+ Segment_Anything)'
|
|
|
83 |
gr.Interface(
|
84 |
inference,
|
85 |
inputs=[
|
86 |
+
gr.Textbox(
|
87 |
lines=1, placeholder=None, default='', label='class names'),
|
88 |
+
gr.Radio(["Segment_Anything", "MaskFormer"], label="Proposal generator", default="Segment_Anything"),
|
89 |
+
gr.Slider(0, 1.0, 0.8, label="For Segment_Anything only, granularity of masks from 0 (most coarse) to 1 (most precise)"),
|
90 |
+
gr.Image(type='filepath'),
|
91 |
],
|
92 |
outputs=gr.outputs.Image(label='segmentation map'),
|
93 |
title=title,
|
open_vocab_seg/modeling/clip_adapter/utils.py
CHANGED
@@ -62,8 +62,8 @@ def crop_with_mask(
|
|
62 |
new_image = torch.cat(
|
63 |
[image.new_full((1, b - t, r - l), fill_value=val) for val in fill]
|
64 |
)
|
65 |
-
|
66 |
-
return image[:, t:b, l:r] * mask[None, t:b, l:r] + (~
|
67 |
|
68 |
|
69 |
def build_clip_model(model: str, mask_prompt_depth: int = 0, frozen: bool = True):
|
|
|
62 |
new_image = torch.cat(
|
63 |
[image.new_full((1, b - t, r - l), fill_value=val) for val in fill]
|
64 |
)
|
65 |
+
mask_bool = mask.bool()
|
66 |
+
return image[:, t:b, l:r] * mask[None, t:b, l:r] + (~ mask_bool[None, t:b, l:r]) * new_image, mask[None, t:b, l:r]
|
67 |
|
68 |
|
69 |
def build_clip_model(model: str, mask_prompt_depth: int = 0, frozen: bool = True):
|
open_vocab_seg/utils/predictor.py
CHANGED
@@ -173,7 +173,7 @@ class SAMVisualizationDemo(object):
|
|
173 |
for bbox, mask in zip(bboxes, pred_masks):
|
174 |
region, _ = crop_with_mask(
|
175 |
image,
|
176 |
-
mask
|
177 |
bbox,
|
178 |
fill=mask_fill,
|
179 |
)
|
|
|
173 |
for bbox, mask in zip(bboxes, pred_masks):
|
174 |
region, _ = crop_with_mask(
|
175 |
image,
|
176 |
+
mask,
|
177 |
bbox,
|
178 |
fill=mask_fill,
|
179 |
)
|
resources/demo_samples/sample_05.png
ADDED
Git LFS Details
|