## Prepare Datasets for OVSeg This doc is a modification/extension of [MaskFormer](https://github.com/facebookresearch/MaskFormer/blob/main/datasets/README.md) following [Detectron2 fromat](https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html). A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog) for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc). This document explains how to setup the builtin datasets so they can be used by the above APIs. [Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`, and how to add new datasets to them. OVSeg has builtin support for a few datasets. The datasets are assumed to exist in a directory specified by the environment variable `DETECTRON2_DATASETS`. Under this directory, detectron2 will look for datasets in the structure described below, if needed. ``` $DETECTRON2_DATASETS/ coco/ # COCOStuff-171 ADEChallengeData2016/ # ADE20K-150 ADE20K_2021_17_01/ # ADE20K-847 VOCdevkit/ VOC2012/ # PASCALVOC-20 VOC2010/ # PASCALContext-59, PASCALContext-459 ``` You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`. If left unset, the default is `./datasets` relative to your current working directory. Without specific notifications, our model is trained on COCOStuff-171 and evlauted on ADE20K-150, ADE20K-847, PASCALVOC-20, PASCALContext-59 and PASCALContext-459. | dataset | split | # images | # categories | |:--------------:|:---------:|:--------:|:------------:| | COCO Stuff | train2017 | 118K | 171 | | ADE20K | val | 2K | 150/847 | | Pascal VOC | val | 1.5K | 20 | | Pascal Context | val | 5K | 59/459 | ### Expected dataset structure for [COCO Stuff](https://github.com/nightrome/cocostuff): ``` coco/ train2017/ # http://images.cocodataset.org/zips/train2017.zip annotations/ # http://images.cocodataset.org/annotations/annotations_trainval2017.zip stuffthingmaps/ stuffthingmaps_trainval2017.zip # http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip train2017/ # below are generated stuffthingmaps_detectron2/ train2017/ ``` The directory `stuffthingmaps_detectron2` is generated by running `python datasets/prepare_coco_stuff_sem_seg.py`. ### Expected dataset structure for [ADE20k Scene Parsing (ADE20K-150)](http://sceneparsing.csail.mit.edu/): ``` ADEChallengeData2016/ annotations/ images/ objectInfo150.txt # below are generated annotations_detectron2/ ``` The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`. ### Expected dataset structure for [ADE20k-Full (ADE20K-847)](https://github.com/CSAILVision/ADE20K#download): ``` ADE20K_2021_17_01/ images/ index_ade20k.pkl objects.txt # below are generated images_detectron2/ annotations_detectron2/ ``` The directories `images_detectron2` and `annotations_detectron2` are generated by running `python datasets/prepare_ade20k_full_sem_seg.py`. ### Expected dataset structure for [Pascal VOC 2012 (PASCALVOC-20)](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit): ``` VOCdevkit/VOC2012/ Annotations/ ImageSets/ JPEGImages/ SegmentationClass/ SegmentationObject/ SegmentationClassAug/ # https://github.com/kazuto1011/deeplab-pytorch/blob/master/data/datasets/voc12/README.md # below are generated images_detectron2/ annotations_detectron2/ ``` It starts with a tar file `VOCtrainval_11-May-2012.tar`. We use SBD augmentated training data as `SegmentationClassAug` following [Deeplab](https://github.com/kazuto1011/deeplab-pytorch/blob/master/data/datasets/voc12/README.md) The directories `images_detectron2` and `annotations_detectron2` are generated by running `python datasets/prepare_voc_sem_seg.py`. ### Expected dataset structure for [Pascal Context](https://www.cs.stanford.edu/~roozbeh/pascal-context/): ``` VOCdevkit/VOC2010/ Annotations/ ImageSets/ JPEGImages/ SegmentationClass/ SegmentationObject/ # below are from https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz trainval/ labels.txt 59_labels.txt # https://www.cs.stanford.edu/~roozbeh/pascal-context/59_labels.txt pascalcontext_val.txt # https://drive.google.com/file/d/1BCbiOKtLvozjVnlTJX51koIveUZHCcUh/view?usp=sharing # below are generated annotations_detectron2/ pc459_val pc59_val ``` It starts with a tar file `VOCtrainval_03-May-2010.tar`. You may want to download the 5K validation set [here](https://drive.google.com/file/d/1BCbiOKtLvozjVnlTJX51koIveUZHCcUh/view?usp=sharing). The directory `annotations_detectron2` is generated by running `python datasets/prepare_pascal_context.py`.