File size: 35,006 Bytes
5f0fbb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
import copy
import datetime
import json
import os
from email.utils import parseaddr
import re
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import Dataset, DatasetDict, VerificationMode, get_dataset_config_names, load_dataset
from huggingface_hub import HfApi
from content import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
INTRODUCTION_TEXT,
SUBMISSION_TEXT,
TITLE,
format_error,
format_log,
format_warning,
model_hyperlink,
)
TOKEN = os.environ.get("HF_TOKEN", None)
OWNER = "facebook"
## private datasets
SUBMISSION_DATASET = f"{OWNER}/pwm_leaderboard_submissions_internal"
CONTACT_DATASET = f"{OWNER}/pwm_leaderboard_contact_info_internal"
## public datasets
RESULTS_DATASET = f"{OWNER}/pwm_leaderboard_results_public"
LEADERBOARD_PATH = f"{OWNER}/pwm_leaderboard"
DATA_VERSION = "1.0.0"
# Dataset paths
MVP_DATASET = "facebook/minimal_video_pairs"
INTP_DATASET = "facebook/IntPhys2_test"
WMQA_DATASET = "facebook/CausalVQA"
# Dataset names
MVP_NAME = "MVPBench"
INTP_NAME = "IntPhys 2"
WMQA_NAME = "CausalVQA"
# Dataset keys
MVP_KEY = "mvp"
MVP_MINI_KEY = "mvp_mini"
INTP_KEY = "intphys2"
WMQA_KEY = "causalvqa"
TASKS = [
(INTP_KEY, INTP_NAME),
(MVP_KEY, MVP_NAME),
(WMQA_KEY, WMQA_NAME),
]
VISIBLE_TASKS = copy.deepcopy(TASKS)
PRE_COL_NAMES = ["Model Name"]
POST_COL_NAMES = ["Model Type", "Vision Backbone", "LLM Backbone", "Submission Date"]
api = HfApi()
os.makedirs("scored", exist_ok=True)
LOCAL_DEBUG = False
# Display the results
LDB_TEXT_KEYS = ["model", "model_type", "vision_backbone", "llm_backbone"]
LDB_TEXT_TYPES = ["markdown", "text", "text", "text"]
MISSING_VALUE = -1.0
HUMAN_BASELINES = {
"url": "",
"model": "Human",
"model_type": "Human",
"system_prompt": "test",
"vision_backbone": " - ",
"llm_backbone": " - ",
"num_frames": -1,
f"score_{INTP_KEY}": 92.44,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 92.9,
f"score_{WMQA_KEY}": 84.78,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
GEMINI2_5 = {
"url": "https://deepmind.google/models/gemini/flash/",
"model": "Gemini 2.5 Flash",
"model_type": "Closed",
"system_prompt": "test",
"vision_backbone": " - ",
"llm_backbone": " - ",
"num_frames": 10,
f"score_{INTP_KEY}": 56.1,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": MISSING_VALUE,
f"score_{WMQA_KEY}": 61.66,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
GPT4O = {
"url": "https://openai.com/index/gpt-4o-system-card/",
"model": "GPT-4o",
"model_type": "Closed",
"system_prompt": "test",
"vision_backbone": " - ",
"llm_backbone": " - ",
"num_frames": 10,
f"score_{INTP_KEY}": 53.19,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 32.5,
f"score_{WMQA_KEY}": 50.95,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
INTERN_VL = {
"url": "https://internvl.github.io/blog/2024-12-05-InternVL-2.5/",
"model": "InternVL2.5",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "InternViT-300M",
"llm_backbone": "InternLM2.5-7B-Chat",
"num_frames": 16,
f"score_{INTP_KEY}": MISSING_VALUE,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 39.9,
f"score_{WMQA_KEY}": 47.54,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
LLAVA = {
"url": "https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov",
"model": "LLaVA-OneVision",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "SigLIP",
"llm_backbone": "Qwen2-7B",
"num_frames": 16,
f"score_{INTP_KEY}": MISSING_VALUE,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 20.7,
f"score_{WMQA_KEY}": 45.27,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
PLM = {
"url": "https://github.com/facebookresearch/perception_models",
"model": "Perception Language Model (PLM)",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "PE",
"llm_backbone": "Llama3.1 8B",
"num_frames": 16,
f"score_{INTP_KEY}": MISSING_VALUE,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 39.7,
f"score_{WMQA_KEY}": 50.06,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
QWENVL = {
"url": "https://github.com/QwenLM/Qwen2.5-VL",
"model": "Qwen2.5-VL",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "ViT",
"llm_backbone": "Qwen2.5-7B-Instruct",
"num_frames": 16,
f"score_{INTP_KEY}": 49.12,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 36.7,
f"score_{WMQA_KEY}": 49.05,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
GEMINI1_5 = {
"url": "https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/1-5-pro",
"model": "Gemini 1.5 Pro",
"model_type": "Closed",
"system_prompt": "test",
"vision_backbone": " - ",
"llm_backbone": " - ",
"num_frames": -1,
f"score_{INTP_KEY}": 52.1,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 29.6,
f"score_{WMQA_KEY}": MISSING_VALUE,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
VJEPA2 = {
"url": "https://ai.meta.com/vjepa/",
"model": "V-JEPA 2",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "VJEPA 2",
"llm_backbone": "Llama3.1 8B",
"num_frames": -1,
f"score_{INTP_KEY}": 56.4,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": 44.5,
f"score_{WMQA_KEY}": 38.99,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
COSMOS = {
"url": "https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-4B",
"model": "Cosmos-4B",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": " - ",
"llm_backbone": " - ",
"num_frames": -1,
f"score_{INTP_KEY}": 48.84,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": MISSING_VALUE,
f"score_{WMQA_KEY}": MISSING_VALUE,
"date": "2025-06-11",
"organization": "Meta",
"submitted_by": "user",
}
def get_dataframe_from_results(eval_results, split):
local_df = eval_results[split]
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
local_df = local_df.remove_columns(["system_prompt"])#, "url"])
df = pd.DataFrame(local_df)
# reformat the data to keep a single row for a given model and organization pair
# in case of multiple entries, choose the ones with latest values
df["model_org"] = df["model"].str.cat(df["organization"], sep="-")
ldb_m2r = {}
for i, row in df.iterrows():
if row["model_org"] not in ldb_m2r:
ldb_m2r[row["model_org"]] = {}
prev_d = ldb_m2r[row["model_org"]]
new_d = {}
for key in LDB_TEXT_KEYS:
new_d[key] = row[key] if len(row[key]) > 0 else prev_d.get(key, "NA")
for tname, _ in TASKS:
new_d[f"score_{tname}"] = (
row[f"score_{tname}"] if row[f"score_{tname}"] >= 0 else prev_d.get(f"score_{tname}", MISSING_VALUE)
)
if tname == "mvp":
new_d[f"score_mvp_mini"] = (
row[f"score_mvp_mini"]
if row[f"score_mvp_mini"] >= 0
else prev_d.get(f"score_mvp_mini", MISSING_VALUE)
)
new_d["date"] = row["date"]
ldb_m2r[row["model_org"]] = new_d
# add Human baseline
ldb_m2r["human"] = HUMAN_BASELINES
ldb_m2r["gemini2.5"] = GEMINI2_5
ldb_m2r["gemini1.5"] = GEMINI1_5
ldb_m2r["gpt4o"] = GPT4O
ldb_m2r["internvl"] = INTERN_VL
ldb_m2r["llavaov"] = LLAVA
ldb_m2r["plm"] = PLM
ldb_m2r["qwen2.5"] = QWENVL
ldb_m2r["vjepa2"] = VJEPA2
ldb_m2r["cosmos"] = COSMOS
# compute average and convert back to rows
ldb_rows = []
for key, val in ldb_m2r.items():
print(ldb_m2r[key])
if "url" in ldb_m2r[key].keys() and ldb_m2r[key]["url"] != "":
ldb_m2r[key]["model"] = model_hyperlink(ldb_m2r[key]["url"],ldb_m2r[key]["model"])
row = copy.deepcopy(val)
score_keys = {k for k in val if k.startswith("score_")}
row["score"] = np.round(np.mean([row[sk] for sk in score_keys if (row[sk] != MISSING_VALUE and row[sk] != "-")]), 2)
tasks_completed = 0
for sk in score_keys:
if row[sk] == MISSING_VALUE:
row[sk] = "-"
else:
tasks_completed += 1
row["tasks_completed"] = tasks_completed
ldb_rows.append(row)
df = pd.DataFrame(ldb_rows)
df = df.query('date >= "2025-06-11"')
# df = df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
# sort
df = df.sort_values(by=["tasks_completed", "score"], ascending=False)
# format numerics
numeric_cols = [c for c in df.columns if c.startswith("score_")]
for nc in numeric_cols:
df[nc] = df[nc].apply(lambda x: np.round(x, 2) if type(x) == float else x)
# remove columns and rename
df.drop(["tasks_completed"], axis=1, inplace=True)
col_mapper = {f"score_{tname}": f"{tdisplay} (%)" for tname, tdisplay in TASKS if tname != "mvp"}
col_mapper.update(
{
"model": "Model Name",
"model_type": "Model Type",
"vision_backbone": "Vision Backbone",
"llm_backbone": "LLM Backbone",
#"score": "Average Score (%)",
"date": "Submission Date",
}
)
df.rename(col_mapper, axis=1, inplace=True)
df[f"{MVP_NAME} (%)"] = df.score_mvp_mini.astype(str)
df.drop([f"score_{MVP_KEY}", f"score_{MVP_MINI_KEY}"], axis=1, inplace=True)
# order columns
df = df[PRE_COL_NAMES + [f"{t[1]} (%)" for t in VISIBLE_TASKS] + POST_COL_NAMES]
return df
def create_dummy_data():
# Dummy evals data
rows = [
{
"url": "https://deepmind.google/models/gemini/flash/",
"model": "Gemini Test",
"model_type": "Closed",
"system_prompt": "test",
"vision_backbone": " - ",
"llm_backbone": " - ",
"num_frames": 10,
f"score_{INTP_KEY}": 56.1,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": MISSING_VALUE,
f"score_{WMQA_KEY}": 61.66,
"date": datetime.datetime.today().strftime("%Y-%m-%d"),
"organization": "test",
"submitted_by": "octocat",
},
{
"url": "https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf",
"model": "Llava 1.6",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "CLIP",
"llm_backbone": "Mistral",
"num_frames": 16,
f"score_{INTP_KEY}": MISSING_VALUE,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": MISSING_VALUE,
f"score_{WMQA_KEY}": MISSING_VALUE,
"date": datetime.datetime.today().strftime("%Y-%m-%d"),
"organization": "test",
"submitted_by": "octocat",
},
{
"url": "https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf",
"model": "Llava 1.6",
"model_type": "Open",
"system_prompt": "test",
"vision_backbone": "CLIP",
"llm_backbone": "Mistral",
"num_frames": 16,
f"score_{INTP_KEY}": 0.0,
f"score_{MVP_KEY}": MISSING_VALUE,
f"score_{MVP_MINI_KEY}": MISSING_VALUE,
f"score_{WMQA_KEY}": 0.0,
"date": datetime.datetime.today().strftime("%Y-%m-%d"),
"organization": "test",
"submitted_by": "octocat",
},
]
dt = DatasetDict({"valid": Dataset.from_list(rows), "test": Dataset.from_list(rows)})
# Dummy contact
contact_info = {
"model": "llama",
"url": "test",
"organization": "test",
"username": "test",
"mail": "test",
"date": datetime.datetime.today().strftime("%Y-%m-%d"),
}
cdt = DatasetDict({"valid": Dataset.from_list([contact_info]), "test": Dataset.from_list([contact_info])})
return dt, cdt
DUMMY_DATA = False
def get_eval_data():
if DUMMY_DATA:
eval_results, _ = create_dummy_data()
else:
eval_results = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
trust_remote_code=True,
)
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="valid")
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
return eval_results, eval_dataframe_val, eval_dataframe_test
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
# --- MVP Functions __
def validate_mvp(submission_df, split="valid"):
subsets = submission_df.data_name.unique()
for subset in subsets:
assert subset in [MVP_KEY, MVP_MINI_KEY], format_error(
f"Wrong tasks, got {subset} but expecting either mvp or mvp_mini"
)
gold_tasks = get_dataset_config_names(MVP_DATASET, token=TOKEN)
for subset in subsets:
tasks = submission_df[submission_df.data_name == subset].task.unique()
assert len(tasks) == len(gold_tasks), format_error(
f"{MVP_NAME} submission must have all tasks, found = {tasks}, expecting = {gold_tasks}"
)
for task in tasks:
sub_df = submission_df[(submission_df.data_name == subset) & (submission_df.task == task)].copy()
assert task in gold_tasks, format_error(f"Found unknown task {task} for {MVP_NAME}, check submission")
gold_dataset = load_dataset(MVP_DATASET, task, split="full" if subset == MVP_KEY else "mini", token=TOKEN)
assert len(sub_df) == len(gold_dataset), format_error(
f"Number of examples do not match in user submission, found {len(sub_df)} but expecting {len(gold_dataset)} for task {task} in split {subset}"
)
id2answer = {row["video_id"]: row["answer"] for row in gold_dataset}
for i, r in sub_df.iterrows():
assert r["row_id"] in id2answer, format_error(
f"Submission contains row_id {r['row_id']} which doesn't match the dataset's video_id"
)
def compute_scores_mvp(submission_df, split="valid"):
gold_tasks = get_dataset_config_names(MVP_DATASET, token=TOKEN)
subsets = submission_df.data_name.unique()
scored_subs = []
for subset in subsets:
tasks = submission_df[submission_df.data_name == subset].task.unique()
assert len(tasks) == len(gold_tasks), format_error(f"{MVP_NAME} submission must have all tasks")
for task in tasks:
sub_df = submission_df[(submission_df.data_name == subset) & (submission_df.task == task)].copy()
gold_dataset = load_dataset(MVP_DATASET, task, split="full" if subset == MVP_KEY else "mini", token=TOKEN)
id2answer = {row["video_id"]: row["answer"] for row in gold_dataset}
correct = []
for i, r in sub_df.iterrows():
gold_answer = id2answer[r["row_id"]]
model_answer = r["model_answer"]
if gold_answer == model_answer:
correct.append(1)
else:
correct.append(0)
sub_df["rating"] = correct
scored_subs.append(sub_df)
return pd.concat(scored_subs)
def aggregate_scores_mvp(scored_submission_df, split="valid"):
subsets = scored_submission_df.data_name.unique()
subset_scores = {f"score_{s}": 0 for s in subsets}
for subset in subsets:
tasks = scored_submission_df[scored_submission_df.data_name == subset].task.unique()
task_pair_accuracies = []
for task in tasks:
sub_df = scored_submission_df[
(scored_submission_df.data_name == subset) & (scored_submission_df.task == task)
].copy()
result_by_vid = {}
pair_correct_count = 0
for i, row in sub_df.iterrows():
video_id = "_".join(row["row_id"].split("_")[:-1])
if video_id not in result_by_vid:
result_by_vid[video_id] = [row.to_dict()]
else:
result_by_vid[video_id].append(row.to_dict())
for video_id, answer_dict_pair in result_by_vid.items():
answer_dict_1, answer_dict_2 = answer_dict_pair
if answer_dict_1["rating"] == 1 and answer_dict_2["rating"] == 1:
pair_correct_count += 1
task_pair_accuracies.append((pair_correct_count / len(result_by_vid)) * 100)
# compute macro scores
subset_scores[f"score_{subset}"] = np.mean(task_pair_accuracies)
return subset_scores
# --- CausalVQA functions ---
def validate_causalvqa(submission_df, split="test"):
#assert split == "test", format_error(f"Split {split} not available for dataset {WMQA_NAME}")
split = "train"
subsets = submission_df.data_name.unique()
for subset in subsets:
assert subset in [WMQA_KEY], format_error(
f"Wrong tasks, got {subset} but expecting causalvqa"
)
gold_tasks = get_dataset_config_names(WMQA_DATASET, token=TOKEN)
for subset in subsets:
tasks = "default"#submission_df[submission_df.data_name == subset].task.unique()
sub_df = submission_df[(submission_df.data_name == subset)].copy()
gold_dataset = load_dataset(WMQA_DATASET, "", split="train", token=TOKEN) #note, causalvqa only has a test dataset under hf split 'valid'
assert len(sub_df) == len(gold_dataset), format_error(
f"Number of examples do not match in user submission, found {len(sub_df)} but expecting {len(gold_dataset)} for task {task} in split {subset}"
)
id2answer = {row["id"]+'_'+str(row["n"]): row["answer"] for row in gold_dataset}
for i, r in sub_df.iterrows():
assert r["row_id"] in id2answer, format_error(
f"Submission contains row_id {r['row_id']} which doesn't match the dataset's qid"
)
print('validated')
def compute_scores_causalvqa(submission_df, split="test"):
#assert split == "test", format_error(f"Split {split} not available for dataset {WMQA_NAME}")
split = "train"
gold_tasks = get_dataset_config_names(WMQA_DATASET, token=TOKEN)
subsets = submission_df.data_name.unique()
scored_subs = []
for subset in subsets:
sub_df = submission_df[(submission_df.data_name == subset)].copy()
sub_df['model_answer'] = sub_df['model_answer'].str.replace(r'[^a-eA-E]', '', regex=True, flags=re.IGNORECASE).str.upper()
gold_dataset = load_dataset(WMQA_DATASET, "", split="train", token=TOKEN)
gold_dataset = gold_dataset.to_pandas()
gold_dataset['row_id'] = gold_dataset.apply(lambda x: x['id']+'_'+str(x['n']), axis=1)
joined = pd.merge(gold_dataset, sub_df, on='row_id', how='left')
correct = []
for i, r in joined.iterrows():
gold_answer = r['answer']
model_answer = r["model_answer"]
if gold_answer == model_answer:
correct.append(1)
else:
correct.append(0)
joined["rating"] = correct
scored_subs.append(joined)
print(joined.columns)
print('scored')
return pd.concat(scored_subs)
def aggregate_scores_causalvqa(scored_submission_df, split="test"):
subsets = scored_submission_df.data_name.unique()
subset_scores = {f"score_{s}": 0 for s in subsets}
for subset in subsets:
sub_df = scored_submission_df[scored_submission_df.data_name == subset].copy()
agg_df = sub_df.groupby(['id','strata'])['rating'].sum().reset_index()
agg_df['points'] = 0
agg_df.loc[agg_df['rating']==2, 'points'] = 1
# compute macro scores
subset_scores[f"score_{subset}"] = agg_df.points.mean()*100.00
print('aggregated')
return subset_scores
# --- IntPhys functions ---
def validate_intphys(submission_df, split="test"):
assert split == "test", format_error(f"Split {split} not available for dataset {INTP_NAME}")
subsets = submission_df.data_name.unique()
for subset in subsets:
assert subset in [INTP_KEY], format_error(
f"Wrong tasks, got {subset} but expecting " + INTP_KEY
)
gold_tasks = get_dataset_config_names(INTP_DATASET, token=TOKEN)
for subset in subsets:
sub_df = submission_df[(submission_df.data_name == subset)].copy()
gold_dataset = load_dataset(INTP_DATASET, "", split="test")
assert len(sub_df) == len(gold_dataset), format_error(
f"Number of examples do not match in user submission, found {len(sub_df)} but expecting {len(gold_dataset)} in split {subset}"
)
id2answer = {row["name"]: row["answer"] for row in gold_dataset}
for i, r in sub_df.iterrows():
assert r["row_id"] in id2answer, format_error(
f"Submission contains row_id {r['row_id']} which doesn't match the dataset's video_id"
)
def compute_scores_intphys(submission_df, split="test"):
assert split == "test", format_error(f"Split {split} not available for dataset {INTP_NAME}")
gold_tasks = get_dataset_config_names(INTP_DATASET, token=TOKEN)
subsets = submission_df.data_name.unique()
scored_subs = []
for subset in subsets:
sub_df = submission_df[(submission_df.data_name == subset)].copy()
gold_dataset = load_dataset(INTP_DATASET, "", split="test", token=TOKEN)
id2answer = {row["name"]: row["answer"] for row in gold_dataset}
correct = []
for i, r in sub_df.iterrows():
gold_answer = id2answer[r["row_id"]]
model_answer = r["model_answer"]
if gold_answer == model_answer:
correct.append(1)
else:
correct.append(0)
sub_df["rating"] = correct
scored_subs.append(sub_df)
return pd.concat(scored_subs)
def aggregate_scores_intphys(scored_submission_df, split="test"):
subsets = scored_submission_df.data_name.unique()
subset_scores = {f"score_{s}": 0 for s in subsets}
accuracies = []
for subset in subsets:
sub_df = scored_submission_df[
(scored_submission_df.data_name == subset)
].copy()
result_by_vid = {}
pair_correct_count = 0
for i, row in sub_df.iterrows():
if row["rating"] == 1:
pair_correct_count += 1
accuracies.append((pair_correct_count / len(sub_df)) * 100)
# compute macro scores
subset_scores[f"score_{subset}"] = np.mean(accuracies)
return subset_scores
VALIDATION_FN = {
MVP_KEY: validate_mvp,
MVP_MINI_KEY: validate_mvp,
INTP_KEY: validate_intphys,
WMQA_KEY: validate_causalvqa,
}
SCORER_FN = {
MVP_KEY: compute_scores_mvp,
MVP_MINI_KEY: compute_scores_mvp,
INTP_KEY: compute_scores_intphys,
WMQA_KEY: compute_scores_causalvqa,
}
AGGREGATE_FN = {
MVP_KEY: aggregate_scores_mvp,
MVP_MINI_KEY: aggregate_scores_mvp,
INTP_KEY: aggregate_scores_intphys,
WMQA_KEY: aggregate_scores_causalvqa,
}
def compute_scores(submission_df, split="valid"):
"""
Runs the scores with held out valid/test sets, and updates the submission with metrics for each dataset
- First, runs validation for the input to ensure the right keys are present
- Then, runs the evaluations
"""
tasks = submission_df.data_name.unique()
scored_subs = []
for t in tasks:
task_sub = submission_df[submission_df.data_name == t].copy()
scored_subs.append(SCORER_FN[t](task_sub, split))
scored_subs = pd.concat(scored_subs)
return scored_subs
def aggregate_scores(scored_df, split="valid"):
tasks = scored_df.data_name.unique()
agg_scores = {}
for task in tasks:
task_sub = scored_df[scored_df.data_name == task].copy()
agg_metrics = AGGREGATE_FN[task](task_sub, split=split)
agg_scores.update(agg_metrics)
return agg_scores
def validate_submission(submission_df, split="valid"):
"""
Validate user submissions
"""
# Run checks
assert "data_name" in submission_df.columns, format_error("Submission missing column data_name")
assert "row_id" in submission_df.columns, format_error("Submission missing column row_id")
assert "task" in submission_df.columns, format_error("Submission missing column task")
assert "model_answer" in submission_df.columns, format_error("Submission missing column model_answer")
tasks = submission_df.data_name.unique()
valid_tasks = [t[0] for t in TASKS] + [MVP_MINI_KEY]
for t in tasks:
assert t in valid_tasks, format_error(
f"Submission contains one or more rows with data_name={t}, which is not a valid task for this leaderboard (expecting to match a dataset in {valid_tasks})"
)
# Dataset specific checks
for task in tasks:
task_sub = submission_df[submission_df.data_name == task].copy()
VALIDATION_FN[task](task_sub)
def add_new_eval(
model: str,
vision_backbone: str,
llm_backbone: str,
url: str,
model_type: str,
path_to_file: str,
organization: str,
mail: str,
profile: gr.OAuthProfile,
progress=gr.Progress(),
):
progress(0, desc="Validating user ...")
contact_infos = load_dataset(
CONTACT_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
trust_remote_code=True,
)
user_submission_dates = sorted(
row["date"] for row in contact_infos["test"] if row["username"] == profile.username
)
# Logic to limit submissions per day
if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime("%Y-%m-%d"):
return format_error("You already submitted once today, please try again tomorrow.")
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
progress(0.1, desc="Fetching recent evals ...")
eval_results, _, _ = get_eval_data()
# # Check if the combination model/org already exists and prints a warning message if yes
# if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organization.lower() in set(
# [o.lower() for o in eval_results[val_or_test]["organization"]]
# ):
# return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# validate submission - do not save submission until its fully validated
progress(0.3, desc="Validating user submission ...")
file_path = path_to_file.name
assert file_path.endswith(".jsonl"), format_error("Please submit a jsonl file")
submissions_df = pd.read_json(file_path, lines=True, orient="records")
validate_submission(submissions_df)
# Save submitted file
if LOCAL_DEBUG:
gr.Info("In local debug mode, mock uploading submission dataset.")
else:
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organization}/{model}/submissions/test_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN,
)
# Compute score
progress(0.5, desc="Computing scores ...")
scored_df = compute_scores(submissions_df, split="test")
# Save scored file
if LOCAL_DEBUG:
gr.Info("In local debug mode, mock uploading scored files")
else:
tasks = scored_df.data_name.unique()
for task in tasks:
scored_df.to_json(f"scored/{organization}_{model}_{task}.jsonl", lines=True, orient="records")
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organization}_{model}_{task}.jsonl",
path_in_repo=f"{organization}/{model}/scored/{task}/test_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN,
)
# Actual submission
progress(0.7, desc="Submitting leaderboard entry ...")
eval_entry = {
"model": model,
"model_type": model_type,
"vision_backbone": vision_backbone,
"llm_backbone": llm_backbone,
"url": url,
"organization": organization,
"submitted_by": profile.username,
"date": datetime.datetime.today().strftime("%Y-%m-%d"),
}
agg_metrics = aggregate_scores(scored_df, split="test")
eval_entry.update(agg_metrics)
# update missing tasks to MISSING_VALUE
task_keys = [t[0] for t in TASKS] + [MVP_MINI_KEY]
missing_metrics = {f"score_{task}": MISSING_VALUE for task in task_keys if f"score_{task}" not in eval_entry}
eval_entry.update(missing_metrics)
eval_results["test"] = eval_results["test"].add_item(eval_entry)
if LOCAL_DEBUG:
print(eval_results["valid"][-1])
gr.Info("In local debug mode, mock uploading aggregated scores")
else:
eval_results.push_to_hub(RESULTS_DATASET, token=TOKEN)
progress(0.9, desc="Updating contacts ...")
contact_info = {
"model": model,
"url": url,
"organization": organization,
"username": profile.username,
"mail": mail,
"date": datetime.datetime.today().strftime("%Y-%m-%d"),
}
contact_infos["test"] = contact_infos["test"].add_item(contact_info)
if LOCAL_DEBUG:
print("mock uploaded contact info")
else:
contact_infos.push_to_hub(CONTACT_DATASET, token=TOKEN)
progress(1.0, desc="Completed evaluation successfully. Please refresh leaderboard")
success_str = f"Model {model} submitted by {organization} is successfully evaluated and stored in our database.\nPlease wait a few hours and refresh the leaderboard to see your score displayed."
format_log(success_str)
return success_str
def on_filter_model_size_method_change():
_, eval_dataframe_val, eval_dataframe_test = get_eval_data()
# eval_dataframe_val = eval_dataframe_val[PRE_COL_NAMES + [f"{t} (%)" for t in selected_columns] + POST_COL_NAMES]
eval_dataframe_test = eval_dataframe_test[PRE_COL_NAMES + [f"{t} (%)" for _,t in VISIBLE_TASKS] + POST_COL_NAMES]
datatypes = ["markdown"] + ["number" for _ in VISIBLE_TASKS] + ["text"] + ["text"] + ["text"] + ["date"]
# val_ldb = gr.components.Dataframe(
# value=eval_dataframe_val, datatype=datatypes, interactive=False, column_widths=["20%"]
# )
test_ldb = gr.components.Dataframe(
value=eval_dataframe_test, datatype=datatypes, interactive=False, column_widths=["20%"]
)
return test_ldb
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
if __name__ == "__main__":
_, eval_dataframe_val, eval_dataframe_test = get_eval_data()
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Markdown(CITATION_BUTTON_LABEL)
gr.Markdown(CITATION_BUTTON_TEXT)
datatypes = ["markdown"] + ["number" for _ in VISIBLE_TASKS] + ["text"] + ["text"] + ["text"] + ["date"]
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test, datatype=datatypes, interactive=False, column_widths=["20%"]
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
# print(task_filter)
on_filter_model_size_method_change,
#inputs=[VISIBLE_TASKS],
#inputs=[],
outputs=[
#leaderboard_table_val,
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
# level_of_test = "test"
model_name_textbox = gr.Textbox(label="Model name")
model_url = gr.Textbox(label="Model URL")
model_type = gr.Dropdown(choices=["Open", "Closed"], label="Model Type")
# num_frames = gr.Textbox(label="Number of frames used")
llm_backbone_textbox = gr.Textbox(label="LLM Backbone")
vision_backbone_textbox = gr.Textbox(label="Vision Backbone")
# system_prompt_textbox = gr.Textbox(label="System prompt example")
# url_textbox = gr.Textbox(label="Url to model information")
with gr.Column():
organization = gr.Textbox(label="Organization")
mail = gr.Textbox(
label="Contact email"
)
file_output = gr.File()
submission_result = gr.Textbox(label="Status")
with gr.Row():
with gr.Column():
gr.LoginButton()
with gr.Column():
submit_button = gr.Button("Submit Eval")
submit_button.click(
add_new_eval,
[
#level_of_test,
model_name_textbox,
vision_backbone_textbox,
llm_backbone_textbox,
model_url,
model_type,
# num_frames,
file_output,
organization,
mail,
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True) |