File size: 37,308 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import math
import warnings
from typing import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, ModuleList, Sequential
from mmengine.registry import MODELS
from mmengine.utils import deprecated_api_warning, to_2tuple

from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer,
                      build_norm_layer)
from .drop import build_dropout
from .scale import LayerScale

# Avoid BC-breaking of importing MultiScaleDeformableAttention from this file
try:
    from mmcv.ops.multi_scale_deform_attn import \
        MultiScaleDeformableAttention  # noqa F401
    warnings.warn(
        ImportWarning(
            '``MultiScaleDeformableAttention`` has been moved to '
            '``mmcv.ops.multi_scale_deform_attn``, please change original path '  # noqa E501
            '``from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention`` '  # noqa E501
            'to ``from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention`` '  # noqa E501
        ))

except ImportError:
    warnings.warn('Fail to import ``MultiScaleDeformableAttention`` from '
                  '``mmcv.ops.multi_scale_deform_attn``, '
                  'You should install ``mmcv`` rather than ``mmcv-lite`` '
                  'if you need this module. ')


def build_positional_encoding(cfg, default_args=None):
    """Builder for Position Encoding."""
    return MODELS.build(cfg, default_args=default_args)


def build_attention(cfg, default_args=None):
    """Builder for attention."""
    return MODELS.build(cfg, default_args=default_args)


def build_feedforward_network(cfg, default_args=None):
    """Builder for feed-forward network (FFN)."""
    return MODELS.build(cfg, default_args=default_args)


def build_transformer_layer(cfg, default_args=None):
    """Builder for transformer layer."""
    return MODELS.build(cfg, default_args=default_args)


def build_transformer_layer_sequence(cfg, default_args=None):
    """Builder for transformer encoder and transformer decoder."""
    return MODELS.build(cfg, default_args=default_args)


class AdaptivePadding(nn.Module):
    """Applies padding adaptively to the input.

    This module can make input get fully covered by filter
    you specified. It support two modes "same" and "corner". The
    "same" mode is same with "SAME" padding mode in TensorFlow, pad
    zero around input. The "corner"  mode would pad zero
    to bottom right.

    Args:
        kernel_size (int | tuple): Size of the kernel. Default: 1.
        stride (int | tuple): Stride of the filter. Default: 1.
        dilation (int | tuple): Spacing between kernel elements.
            Default: 1.
        padding (str): Support "same" and "corner", "corner" mode
            would pad zero to bottom right, and "same" mode would
            pad zero around input. Default: "corner".

    Example:
        >>> kernel_size = 16
        >>> stride = 16
        >>> dilation = 1
        >>> input = torch.rand(1, 1, 15, 17)
        >>> adap_pad = AdaptivePadding(
        >>>     kernel_size=kernel_size,
        >>>     stride=stride,
        >>>     dilation=dilation,
        >>>     padding="corner")
        >>> out = adap_pad(input)
        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
        >>> input = torch.rand(1, 1, 16, 17)
        >>> out = adap_pad(input)
        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
    """

    def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):
        super().__init__()
        assert padding in ('same', 'corner')

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        self.padding = padding
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation

    def get_pad_shape(self, input_shape):
        """Calculate the padding size of input.

        Args:
            input_shape (:obj:`torch.Size`): arrange as (H, W).

        Returns:
            Tuple[int]: The padding size along the
            original H and W directions
        """
        input_h, input_w = input_shape
        kernel_h, kernel_w = self.kernel_size
        stride_h, stride_w = self.stride
        output_h = math.ceil(input_h / stride_h)
        output_w = math.ceil(input_w / stride_w)
        pad_h = max((output_h - 1) * stride_h +
                    (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
        pad_w = max((output_w - 1) * stride_w +
                    (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
        return pad_h, pad_w

    def forward(self, x):
        """Add padding to `x`

        Args:
            x (Tensor): Input tensor has shape (B, C, H, W).

        Returns:
            Tensor: The tensor with adaptive padding
        """
        pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
        if pad_h > 0 or pad_w > 0:
            if self.padding == 'corner':
                x = F.pad(x, [0, pad_w, 0, pad_h])
            elif self.padding == 'same':
                x = F.pad(x, [
                    pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
                    pad_h - pad_h // 2
                ])
        return x


class PatchEmbed(BaseModule):
    """Image to Patch Embedding.

    We use a conv layer to implement PatchEmbed.

    Args:
        in_channels (int): The num of input channels. Default: 3
        embed_dims (int): The dimensions of embedding. Default: 768
        conv_type (str): The type of convolution
            to generate patch embedding. Default: "Conv2d".
        kernel_size (int): The kernel_size of embedding conv. Default: 16.
        stride (int): The slide stride of embedding conv.
            Default: 16.
        padding (int | tuple | string): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Default: "corner".
        dilation (int): The dilation rate of embedding conv. Default: 1.
        bias (bool): Bias of embed conv. Default: True.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: None.
        input_size (int | tuple | None): The size of input, which will be
            used to calculate the out size. Only works when `dynamic_size`
            is False. Default: None.
        init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels=3,
                 embed_dims=768,
                 conv_type='Conv2d',
                 kernel_size=16,
                 stride=16,
                 padding='corner',
                 dilation=1,
                 bias=True,
                 norm_cfg=None,
                 input_size=None,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims
        if stride is None:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adaptive_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of conv
            padding = 0
        else:
            self.adaptive_padding = None
        padding = to_2tuple(padding)

        self.projection = build_conv_layer(
            dict(type=conv_type),
            in_channels=in_channels,
            out_channels=embed_dims,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias)

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        else:
            self.norm = None

        if input_size:
            input_size = to_2tuple(input_size)
            # `init_out_size` would be used outside to
            # calculate the num_patches
            # e.g. when `use_abs_pos_embed` outside
            self.init_input_size = input_size
            if self.adaptive_padding:
                pad_h, pad_w = self.adaptive_padding.get_pad_shape(input_size)
                input_h, input_w = input_size
                input_h = input_h + pad_h
                input_w = input_w + pad_w
                input_size = (input_h, input_w)

            # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
            h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
                     (kernel_size[0] - 1) - 1) // stride[0] + 1
            w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
                     (kernel_size[1] - 1) - 1) // stride[1] + 1
            self.init_out_size = (h_out, w_out)
        else:
            self.init_input_size = None
            self.init_out_size = None

    def forward(self, x):
        """
        Args:
            x (Tensor): Has shape (B, C, H, W). In most case, C is 3.

        Returns:
            tuple: Contains merged results and its spatial shape.

            - x (Tensor): Has shape (B, out_h * out_w, embed_dims)
            - out_size (tuple[int]): Spatial shape of x, arrange as
              (out_h, out_w).
        """

        if self.adaptive_padding:
            x = self.adaptive_padding(x)

        x = self.projection(x)
        out_size = (x.shape[2], x.shape[3])
        x = x.flatten(2).transpose(1, 2)
        if self.norm is not None:
            x = self.norm(x)
        return x, out_size


class PatchMerging(BaseModule):
    """Merge patch feature map.

    This layer groups feature map by kernel_size, and applies norm and linear
    layers to the grouped feature map ((used in Swin Transformer)).
    Our implementation uses `nn.Unfold` to
    merge patches, which is about 25% faster than the original
    implementation. However, we need to modify pretrained
    models for compatibility.

    Args:
        in_channels (int): The num of input channels.
            to gets fully covered by filter and stride you specified.
        out_channels (int): The num of output channels.
        kernel_size (int | tuple, optional): the kernel size in the unfold
            layer. Defaults to 2.
        stride (int | tuple, optional): the stride of the sliding blocks in the
            unfold layer. Default: None. (Would be set as `kernel_size`)
        padding (int | tuple | string ): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Default: "corner".
        dilation (int | tuple, optional): dilation parameter in the unfold
            layer. Default: 1.
        bias (bool, optional): Whether to add bias in linear layer or not.
            Defaults: False.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='LN').
        init_cfg (dict, optional): The extra config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=2,
                 stride=None,
                 padding='corner',
                 dilation=1,
                 bias=False,
                 norm_cfg=dict(type='LN'),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.out_channels = out_channels
        if stride:
            stride = stride
        else:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adaptive_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of unfold
            padding = 0
        else:
            self.adaptive_padding = None

        padding = to_2tuple(padding)
        self.sampler = nn.Unfold(
            kernel_size=kernel_size,
            dilation=dilation,
            padding=padding,
            stride=stride)

        sample_dim = kernel_size[0] * kernel_size[1] * in_channels

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
        else:
            self.norm = None

        self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)

    def forward(self, x, input_size):
        """
        Args:
            x (Tensor): Has shape (B, H*W, C_in).
            input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
                Default: None.

        Returns:
            tuple: Contains merged results and its spatial shape.

            - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
            - out_size (tuple[int]): Spatial shape of x, arrange as
              (Merged_H, Merged_W).
        """
        B, L, C = x.shape
        assert isinstance(input_size, Sequence), f'Expect ' \
                                                 f'input_size is ' \
                                                 f'`Sequence` ' \
                                                 f'but get {input_size}'

        H, W = input_size
        assert L == H * W, 'input feature has wrong size'

        x = x.view(B, H, W, C).permute([0, 3, 1, 2])  # B, C, H, W

        if self.adaptive_padding:
            x = self.adaptive_padding(x)
            H, W = x.shape[-2:]

        # Use nn.Unfold to merge patch. About 25% faster than original method,
        # but need to modify pretrained model for compatibility
        # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
        x = self.sampler(x)

        out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
                 (self.sampler.kernel_size[0] - 1) -
                 1) // self.sampler.stride[0] + 1
        out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
                 (self.sampler.kernel_size[1] - 1) -
                 1) // self.sampler.stride[1] + 1

        output_size = (out_h, out_w)
        x = x.transpose(1, 2)  # B, H/2*W/2, 4*C
        x = self.norm(x) if self.norm else x
        x = self.reduction(x)
        return x, output_size


@MODELS.register_module()
class MultiheadAttention(BaseModule):
    """A wrapper for ``torch.nn.MultiheadAttention``.

    This module implements MultiheadAttention with identity connection,
    and positional encoding  is also passed as input.

    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): When it is True,  Key, Query and Value are shape of
            (batch, n, embed_dim), otherwise (n, batch, embed_dim).
             Default to False.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=dict(type='Dropout', drop_prob=0.),
                 init_cfg=None,
                 batch_first=False,
                 **kwargs):
        super().__init__(init_cfg)
        if 'dropout' in kwargs:
            warnings.warn(
                'The arguments `dropout` in MultiheadAttention '
                'has been deprecated, now you can separately '
                'set `attn_drop`(float), proj_drop(float), '
                'and `dropout_layer`(dict) ', DeprecationWarning)
            attn_drop = kwargs['dropout']
            dropout_layer['drop_prob'] = kwargs.pop('dropout')

        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.batch_first = batch_first

        self.attn = nn.MultiheadAttention(embed_dims, num_heads, attn_drop,
                                          **kwargs)

        self.proj_drop = nn.Dropout(proj_drop)
        self.dropout_layer = build_dropout(
            dropout_layer) if dropout_layer else nn.Identity()

    # @deprecated_api_warning({'residual': 'identity'},
    #                         cls_name='MultiheadAttention')
    def forward(self,
                query,
                key=None,
                value=None,
                identity=None,
                query_pos=None,
                key_pos=None,
                attn_mask=None,
                key_padding_mask=None,
                **kwargs):
        """Forward function for `MultiheadAttention`.

        **kwargs allow passing a more general data flow when combining
        with other operations in `transformerlayer`.

        Args:
            query (Tensor): The input query with shape [num_queries, bs,
                embed_dims] if self.batch_first is False, else
                [bs, num_queries embed_dims].
            key (Tensor): The key tensor with shape [num_keys, bs,
                embed_dims] if self.batch_first is False, else
                [bs, num_keys, embed_dims] .
                If None, the ``query`` will be used. Defaults to None.
            value (Tensor): The value tensor with same shape as `key`.
                Same in `nn.MultiheadAttention.forward`. Defaults to None.
                If None, the `key` will be used.
            identity (Tensor): This tensor, with the same shape as x,
                will be used for the identity link.
                If None, `x` will be used. Defaults to None.
            query_pos (Tensor): The positional encoding for query, with
                the same shape as `x`. If not None, it will
                be added to `x` before forward function. Defaults to None.
            key_pos (Tensor): The positional encoding for `key`, with the
                same shape as `key`. Defaults to None. If not None, it will
                be added to `key` before forward function. If None, and
                `query_pos` has the same shape as `key`, then `query_pos`
                will be used for `key_pos`. Defaults to None.
            attn_mask (Tensor): ByteTensor mask with shape [num_queries,
                num_keys]. Same in `nn.MultiheadAttention.forward`.
                Defaults to None.
            key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
                Defaults to None.

        Returns:
            Tensor: forwarded results with shape
            [num_queries, bs, embed_dims]
            if self.batch_first is False, else
            [bs, num_queries embed_dims].
        """

        if key is None:
            key = query
        if value is None:
            value = key
        if identity is None:
            identity = query
        if key_pos is None:
            if query_pos is not None:
                # use query_pos if key_pos is not available
                if query_pos.shape == key.shape:
                    key_pos = query_pos
                else:
                    warnings.warn(f'position encoding of key is'
                                  f'missing in {self.__class__.__name__}.')
        if query_pos is not None:
            query = query + query_pos
        if key_pos is not None:
            key = key + key_pos

        # Because the dataflow('key', 'query', 'value') of
        # ``torch.nn.MultiheadAttention`` is (num_query, batch,
        # embed_dims), We should adjust the shape of dataflow from
        # batch_first (batch, num_query, embed_dims) to num_query_first
        # (num_query ,batch, embed_dims), and recover ``attn_output``
        # from num_query_first to batch_first.
        if self.batch_first:
            query = query.transpose(0, 1)
            key = key.transpose(0, 1)
            value = value.transpose(0, 1)

        out = self.attn(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            key_padding_mask=key_padding_mask)[0]

        if self.batch_first:
            out = out.transpose(0, 1)

        return identity + self.dropout_layer(self.proj_drop(out))


@MODELS.register_module()
class FFN(BaseModule):
    """Implements feed-forward networks (FFNs) with identity connection.

    Args:
        embed_dims (int): The feature dimension. Same as
            `MultiheadAttention`. Defaults: 256.
        feedforward_channels (int): The hidden dimension of FFNs.
            Defaults: 1024.
        num_fcs (int, optional): The number of fully-connected layers in
            FFNs. Default: 2.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='ReLU')
        ffn_drop (float, optional): Probability of an element to be
            zeroed in FFN. Default 0.0.
        add_identity (bool, optional): Whether to add the
            identity connection. Default: `True`.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        layer_scale_init_value (float): Initial value of scale factor in
            LayerScale. Default: 1.0
    """

    # @deprecated_api_warning(
    #     {
    #         'dropout': 'ffn_drop',
    #         'add_residual': 'add_identity'
    #     },
    #     cls_name='FFN')
    def __init__(self,
                 embed_dims=256,
                 feedforward_channels=1024,
                 num_fcs=2,
                 act_cfg=dict(type='ReLU', inplace=True),
                 ffn_drop=0.,
                 dropout_layer=None,
                 add_identity=True,
                 init_cfg=None,
                 layer_scale_init_value=0.):
        super().__init__(init_cfg)
        assert num_fcs >= 2, 'num_fcs should be no less ' \
            f'than 2. got {num_fcs}.'
        self.embed_dims = embed_dims
        self.feedforward_channels = feedforward_channels
        self.num_fcs = num_fcs

        layers = []
        in_channels = embed_dims
        for _ in range(num_fcs - 1):
            layers.append(
                Sequential(
                    Linear(in_channels, feedforward_channels),
                    build_activation_layer(act_cfg), nn.Dropout(ffn_drop)))
            in_channels = feedforward_channels
        layers.append(Linear(feedforward_channels, embed_dims))
        layers.append(nn.Dropout(ffn_drop))
        self.layers = Sequential(*layers)
        self.dropout_layer = build_dropout(
            dropout_layer) if dropout_layer else torch.nn.Identity()
        self.add_identity = add_identity

        if layer_scale_init_value > 0:
            self.gamma2 = LayerScale(embed_dims, scale=layer_scale_init_value)
        else:
            self.gamma2 = nn.Identity()

    # @deprecated_api_warning({'residual': 'identity'}, cls_name='FFN')
    def forward(self, x, identity=None):
        """Forward function for `FFN`.

        The function would add x to the output tensor if residue is None.
        """
        out = self.layers(x)
        out = self.gamma2(out)
        if not self.add_identity:
            return self.dropout_layer(out)
        if identity is None:
            identity = x
        return identity + self.dropout_layer(out)


@MODELS.register_module()
class BaseTransformerLayer(BaseModule):
    """Base `TransformerLayer` for vision transformer.

    It can be built from `mmcv.ConfigDict` and support more flexible
    customization, for example, using any number of `FFN or LN ` and
    use different kinds of `attention` by specifying a list of `ConfigDict`
    named `attn_cfgs`. It is worth mentioning that it supports `prenorm`
    when you specifying `norm` as the first element of `operation_order`.
    More details about the `prenorm`: `On Layer Normalization in the
    Transformer Architecture <https://arxiv.org/abs/2002.04745>`_ .

    Args:
        attn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )):
            Configs for `self_attention` or `cross_attention` modules,
            The order of the configs in the list should be consistent with
            corresponding attentions in operation_order.
            If it is a dict, all of the attention modules in operation_order
            will be built with this config. Default: None.
        ffn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )):
            Configs for FFN, The order of the configs in the list should be
            consistent with corresponding ffn in operation_order.
            If it is a dict, all of the attention modules in operation_order
            will be built with this config.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
            Support `prenorm` when you specifying first element as `norm`.
            Default:None.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): Key, Query and Value are shape
            of (batch, n, embed_dim)
            or (n, batch, embed_dim). Default to False.
    """

    def __init__(self,
                 attn_cfgs=None,
                 ffn_cfgs=dict(
                     type='FFN',
                     embed_dims=256,
                     feedforward_channels=1024,
                     num_fcs=2,
                     ffn_drop=0.,
                     act_cfg=dict(type='ReLU', inplace=True),
                 ),
                 operation_order=None,
                 norm_cfg=dict(type='LN'),
                 init_cfg=None,
                 batch_first=False,
                 **kwargs):

        deprecated_args = dict(
            feedforward_channels='feedforward_channels',
            ffn_dropout='ffn_drop',
            ffn_num_fcs='num_fcs')
        for ori_name, new_name in deprecated_args.items():
            if ori_name in kwargs:
                warnings.warn(
                    f'The arguments `{ori_name}` in BaseTransformerLayer '
                    f'has been deprecated, now you should set `{new_name}` '
                    f'and other FFN related arguments '
                    f'to a dict named `ffn_cfgs`. ', DeprecationWarning)
                ffn_cfgs[new_name] = kwargs[ori_name]

        super().__init__(init_cfg)

        self.batch_first = batch_first

        assert set(operation_order) & {
            'self_attn', 'norm', 'ffn', 'cross_attn'} == \
            set(operation_order), f'The operation_order of' \
            f' {self.__class__.__name__} should ' \
            f'contains all four operation type ' \
            f"{['self_attn', 'norm', 'ffn', 'cross_attn']}"

        num_attn = operation_order.count('self_attn') + operation_order.count(
            'cross_attn')
        if isinstance(attn_cfgs, dict):
            attn_cfgs = [copy.deepcopy(attn_cfgs) for _ in range(num_attn)]
        else:
            assert num_attn == len(attn_cfgs), f'The length ' \
                f'of attn_cfg {num_attn} is ' \
                f'not consistent with the number of attention' \
                f'in operation_order {operation_order}.'

        self.num_attn = num_attn
        self.operation_order = operation_order
        self.norm_cfg = norm_cfg
        self.pre_norm = operation_order[0] == 'norm'
        self.attentions = ModuleList()

        index = 0
        for operation_name in operation_order:
            if operation_name in ['self_attn', 'cross_attn']:
                if 'batch_first' in attn_cfgs[index]:
                    assert self.batch_first == attn_cfgs[index]['batch_first']
                else:
                    attn_cfgs[index]['batch_first'] = self.batch_first
                attention = build_attention(attn_cfgs[index])
                # Some custom attentions used as `self_attn`
                # or `cross_attn` can have different behavior.
                attention.operation_name = operation_name
                self.attentions.append(attention)
                index += 1

        self.embed_dims = self.attentions[0].embed_dims

        self.ffns = ModuleList()
        num_ffns = operation_order.count('ffn')
        if isinstance(ffn_cfgs, dict):
            ffn_cfgs = ConfigDict(ffn_cfgs)
        if isinstance(ffn_cfgs, dict):
            ffn_cfgs = [copy.deepcopy(ffn_cfgs) for _ in range(num_ffns)]
        assert len(ffn_cfgs) == num_ffns
        for ffn_index in range(num_ffns):
            if 'embed_dims' not in ffn_cfgs[ffn_index]:
                ffn_cfgs[ffn_index]['embed_dims'] = self.embed_dims
            else:
                assert ffn_cfgs[ffn_index]['embed_dims'] == self.embed_dims
            self.ffns.append(
                build_feedforward_network(ffn_cfgs[ffn_index],
                                          dict(type='FFN')))

        self.norms = ModuleList()
        num_norms = operation_order.count('norm')
        for _ in range(num_norms):
            self.norms.append(build_norm_layer(norm_cfg, self.embed_dims)[1])

    def forward(self,
                query,
                key=None,
                value=None,
                query_pos=None,
                key_pos=None,
                attn_masks=None,
                query_key_padding_mask=None,
                key_padding_mask=None,
                **kwargs):
        """Forward function for `TransformerDecoderLayer`.

        **kwargs contains some specific arguments of attentions.

        Args:
            query (Tensor): The input query with shape
                [num_queries, bs, embed_dims] if
                self.batch_first is False, else
                [bs, num_queries embed_dims].
            key (Tensor): The key tensor with shape [num_keys, bs,
                embed_dims] if self.batch_first is False, else
                [bs, num_keys, embed_dims] .
            value (Tensor): The value tensor with same shape as `key`.
            query_pos (Tensor): The positional encoding for `query`.
                Default: None.
            key_pos (Tensor): The positional encoding for `key`.
                Default: None.
            attn_masks (List[Tensor] | None): 2D Tensor used in
                calculation of corresponding attention. The length of
                it should equal to the number of `attention` in
                `operation_order`. Default: None.
            query_key_padding_mask (Tensor): ByteTensor for `query`, with
                shape [bs, num_queries]. Only used in `self_attn` layer.
                Defaults to None.
            key_padding_mask (Tensor): ByteTensor for `query`, with
                shape [bs, num_keys]. Default: None.

        Returns:
            Tensor: forwarded results with shape [num_queries, bs, embed_dims].
        """

        norm_index = 0
        attn_index = 0
        ffn_index = 0
        identity = query
        if attn_masks is None:
            attn_masks = [None for _ in range(self.num_attn)]
        elif isinstance(attn_masks, torch.Tensor):
            attn_masks = [
                copy.deepcopy(attn_masks) for _ in range(self.num_attn)
            ]
            warnings.warn(f'Use same attn_mask in all attentions in '
                          f'{self.__class__.__name__} ')
        else:
            assert len(attn_masks) == self.num_attn, f'The length of ' \
                        f'attn_masks {len(attn_masks)} must be equal ' \
                        f'to the number of attention in ' \
                        f'operation_order {self.num_attn}'

        for layer in self.operation_order:
            if layer == 'self_attn':
                temp_key = temp_value = query
                query = self.attentions[attn_index](
                    query,
                    temp_key,
                    temp_value,
                    identity if self.pre_norm else None,
                    query_pos=query_pos,
                    key_pos=query_pos,
                    attn_mask=attn_masks[attn_index],
                    key_padding_mask=query_key_padding_mask,
                    **kwargs)
                attn_index += 1
                identity = query

            elif layer == 'norm':
                query = self.norms[norm_index](query)
                norm_index += 1

            elif layer == 'cross_attn':
                query = self.attentions[attn_index](
                    query,
                    key,
                    value,
                    identity if self.pre_norm else None,
                    query_pos=query_pos,
                    key_pos=key_pos,
                    attn_mask=attn_masks[attn_index],
                    key_padding_mask=key_padding_mask,
                    **kwargs)
                attn_index += 1
                identity = query

            elif layer == 'ffn':
                query = self.ffns[ffn_index](
                    query, identity if self.pre_norm else None)
                ffn_index += 1

        return query


@MODELS.register_module()
class TransformerLayerSequence(BaseModule):
    """Base class for TransformerEncoder and TransformerDecoder in vision
    transformer.

    As base-class of Encoder and Decoder in vision transformer.
    Support customization such as specifying different kind
    of `transformer_layer` in `transformer_coder`.

    Args:
        transformerlayer (list[obj:`mmcv.ConfigDict`] |
            obj:`mmcv.ConfigDict`): Config of transformerlayer
            in TransformerCoder. If it is obj:`mmcv.ConfigDict`,
             it would be repeated `num_layer` times to a
             list[`mmcv.ConfigDict`]. Default: None.
        num_layers (int): The number of `TransformerLayer`. Default: None.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self, transformerlayers=None, num_layers=None, init_cfg=None):
        super().__init__(init_cfg)
        if isinstance(transformerlayers, dict):
            transformerlayers = [
                copy.deepcopy(transformerlayers) for _ in range(num_layers)
            ]
        else:
            assert isinstance(transformerlayers, list) and \
                   len(transformerlayers) == num_layers
        self.num_layers = num_layers
        self.layers = ModuleList()
        for i in range(num_layers):
            self.layers.append(build_transformer_layer(transformerlayers[i]))
        self.embed_dims = self.layers[0].embed_dims
        self.pre_norm = self.layers[0].pre_norm

    def forward(self,
                query,
                key,
                value,
                query_pos=None,
                key_pos=None,
                attn_masks=None,
                query_key_padding_mask=None,
                key_padding_mask=None,
                **kwargs):
        """Forward function for `TransformerCoder`.

        Args:
            query (Tensor): Input query with shape
                `(num_queries, bs, embed_dims)`.
            key (Tensor): The key tensor with shape
                `(num_keys, bs, embed_dims)`.
            value (Tensor): The value tensor with shape
                `(num_keys, bs, embed_dims)`.
            query_pos (Tensor): The positional encoding for `query`.
                Default: None.
            key_pos (Tensor): The positional encoding for `key`.
                Default: None.
            attn_masks (List[Tensor], optional): Each element is 2D Tensor
                which is used in calculation of corresponding attention in
                operation_order. Default: None.
            query_key_padding_mask (Tensor): ByteTensor for `query`, with
                shape [bs, num_queries]. Only used in self-attention
                Default: None.
            key_padding_mask (Tensor): ByteTensor for `query`, with
                shape [bs, num_keys]. Default: None.

        Returns:
            Tensor:  results with shape [num_queries, bs, embed_dims].
        """
        for layer in self.layers:
            query = layer(
                query,
                key,
                value,
                query_pos=query_pos,
                key_pos=key_pos,
                attn_masks=attn_masks,
                query_key_padding_mask=query_key_padding_mask,
                key_padding_mask=key_padding_mask,
                **kwargs)
        return query