File size: 9,295 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import tarfile
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from tarfile import TarFile
from zipfile import ZipFile

import torch
from mmengine.utils.path import mkdir_or_exist


def parse_args():
    parser = argparse.ArgumentParser(
        description='Download datasets for training')
    parser.add_argument(
        '--dataset-name', type=str, help='dataset name', default='coco2017')
    parser.add_argument(
        '--save-dir',
        type=str,
        help='the dir to save dataset',
        default='data/coco')
    parser.add_argument(
        '--unzip',
        action='store_true',
        help='whether unzip dataset or not, zipped files will be saved')
    parser.add_argument(
        '--delete',
        action='store_true',
        help='delete the download zipped files')
    parser.add_argument(
        '--threads', type=int, help='number of threading', default=4)
    args = parser.parse_args()
    return args


def download(url, dir, unzip=True, delete=False, threads=1):

    def download_one(url, dir):
        f = dir / Path(url).name
        if Path(url).is_file():
            Path(url).rename(f)
        elif not f.exists():
            print(f'Downloading {url} to {f}')
            torch.hub.download_url_to_file(url, f, progress=True)
        if unzip and f.suffix in ('.zip', '.tar'):
            print(f'Unzipping {f.name}')
            if f.suffix == '.zip':
                ZipFile(f).extractall(path=dir)
            elif f.suffix == '.tar':
                TarFile(f).extractall(path=dir)
            if delete:
                f.unlink()
                print(f'Delete {f}')

    dir = Path(dir)
    if threads > 1:
        pool = ThreadPool(threads)
        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))
        pool.close()
        pool.join()
    else:
        for u in [url] if isinstance(url, (str, Path)) else url:
            download_one(u, dir)


def download_objects365v2(url, dir, unzip=True, delete=False, threads=1):

    def download_single(url, dir):

        if 'train' in url:
            saving_dir = dir / Path('train_zip')
            mkdir_or_exist(saving_dir)
            f = saving_dir / Path(url).name

            unzip_dir = dir / Path('train')
            mkdir_or_exist(unzip_dir)
        elif 'val' in url:
            saving_dir = dir / Path('val')
            mkdir_or_exist(saving_dir)
            f = saving_dir / Path(url).name

            unzip_dir = dir / Path('val')
            mkdir_or_exist(unzip_dir)
        else:
            raise NotImplementedError

        if Path(url).is_file():
            Path(url).rename(f)
        elif not f.exists():
            print(f'Downloading {url} to {f}')
            torch.hub.download_url_to_file(url, f, progress=True)

        if unzip and str(f).endswith('.tar.gz'):
            print(f'Unzipping {f.name}')
            tar = tarfile.open(f)
            tar.extractall(path=unzip_dir)
            if delete:
                f.unlink()
                print(f'Delete {f}')

    # process annotations
    full_url = []
    for _url in url:
        if 'zhiyuan_objv2_train.tar.gz' in _url or \
                'zhiyuan_objv2_val.json' in _url:
            full_url.append(_url)
        elif 'train' in _url:
            for i in range(51):
                full_url.append(f'{_url}patch{i}.tar.gz')
        elif 'val/images/v1' in _url:
            for i in range(16):
                full_url.append(f'{_url}patch{i}.tar.gz')
        elif 'val/images/v2' in _url:
            for i in range(16, 44):
                full_url.append(f'{_url}patch{i}.tar.gz')
        else:
            raise NotImplementedError

    dir = Path(dir)
    if threads > 1:
        pool = ThreadPool(threads)
        pool.imap(lambda x: download_single(*x), zip(full_url, repeat(dir)))
        pool.close()
        pool.join()
    else:
        for u in full_url:
            download_single(u, dir)


def main():
    args = parse_args()
    path = Path(args.save_dir)
    if not path.exists():
        path.mkdir(parents=True, exist_ok=True)
    data2url = dict(
        # TODO: Support for downloading Panoptic Segmentation of COCO
        coco2017=[
            'http://images.cocodataset.org/zips/train2017.zip',
            'http://images.cocodataset.org/zips/val2017.zip',
            'http://images.cocodataset.org/zips/test2017.zip',
            'http://images.cocodataset.org/zips/unlabeled2017.zip',
            'http://images.cocodataset.org/annotations/annotations_trainval2017.zip',  # noqa
            'http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip',  # noqa
            'http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip',  # noqa
            'http://images.cocodataset.org/annotations/image_info_test2017.zip',  # noqa
            'http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip',  # noqa
        ],
        coco2014=[
            'http://images.cocodataset.org/zips/train2014.zip',
            'http://images.cocodataset.org/zips/val2014.zip',
            'http://images.cocodataset.org/zips/test2014.zip',
            'http://images.cocodataset.org/annotations/annotations_trainval2014.zip',  # noqa
            'http://images.cocodataset.org/annotations/image_info_test2014.zip'  # noqa
        ],
        lvis=[
            'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip',  # noqa
            'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip',  # noqa
        ],
        voc2007=[
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',  # noqa
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar',  # noqa
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar',  # noqa
        ],
        voc2012=[
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',  # noqa
        ],
        balloon=[
            # src link: https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip # noqa
            'https://download.openmmlab.com/mmyolo/data/balloon_dataset.zip'
        ],
        # Note: There is no download link for Objects365-V1 right now. If you
        # would like to download Objects365-V1, please visit
        # http://www.objects365.org/ to concat the author.
        objects365v2=[
            # training annotations
            'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/zhiyuan_objv2_train.tar.gz',  # noqa
            # validation annotations
            'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/zhiyuan_objv2_val.json',  # noqa
            # training url root
            'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/',  # noqa
            # validation url root_1
            'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v1/',  # noqa
            # validation url root_2
            'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v2/'  # noqa
        ],
        ade20k_2016=[
            # training images and semantic segmentation annotations
            'http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip',  # noqa
            # instance segmentation annotations
            'http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar',  # noqa
            # img categories ids
            'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/imgCatIds.json',  # noqa
            # category mapping
            'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/categoryMapping.txt'  # noqa
        ],
        refcoco=[
            # images
            'http://images.cocodataset.org/zips/train2014.zip',
            # refcoco annotations
            'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip',
            # refcoco+ annotations
            'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip',
            # refcocog annotations
            'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip'
        ])
    url = data2url.get(args.dataset_name, None)
    if url is None:
        print('Only support ADE20K, COCO, RefCOCO, VOC, LVIS, '
              'balloon, and Objects365v2 now!')
        return
    if args.dataset_name == 'objects365v2':
        download_objects365v2(
            url,
            dir=path,
            unzip=args.unzip,
            delete=args.delete,
            threads=args.threads)
    else:
        download(
            url,
            dir=path,
            unzip=args.unzip,
            delete=args.delete,
            threads=args.threads)


if __name__ == '__main__':
    main()