Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,295 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tarfile
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from tarfile import TarFile
from zipfile import ZipFile
import torch
from mmengine.utils.path import mkdir_or_exist
def parse_args():
parser = argparse.ArgumentParser(
description='Download datasets for training')
parser.add_argument(
'--dataset-name', type=str, help='dataset name', default='coco2017')
parser.add_argument(
'--save-dir',
type=str,
help='the dir to save dataset',
default='data/coco')
parser.add_argument(
'--unzip',
action='store_true',
help='whether unzip dataset or not, zipped files will be saved')
parser.add_argument(
'--delete',
action='store_true',
help='delete the download zipped files')
parser.add_argument(
'--threads', type=int, help='number of threading', default=4)
args = parser.parse_args()
return args
def download(url, dir, unzip=True, delete=False, threads=1):
def download_one(url, dir):
f = dir / Path(url).name
if Path(url).is_file():
Path(url).rename(f)
elif not f.exists():
print(f'Downloading {url} to {f}')
torch.hub.download_url_to_file(url, f, progress=True)
if unzip and f.suffix in ('.zip', '.tar'):
print(f'Unzipping {f.name}')
if f.suffix == '.zip':
ZipFile(f).extractall(path=dir)
elif f.suffix == '.tar':
TarFile(f).extractall(path=dir)
if delete:
f.unlink()
print(f'Delete {f}')
dir = Path(dir)
if threads > 1:
pool = ThreadPool(threads)
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))
pool.close()
pool.join()
else:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
def download_objects365v2(url, dir, unzip=True, delete=False, threads=1):
def download_single(url, dir):
if 'train' in url:
saving_dir = dir / Path('train_zip')
mkdir_or_exist(saving_dir)
f = saving_dir / Path(url).name
unzip_dir = dir / Path('train')
mkdir_or_exist(unzip_dir)
elif 'val' in url:
saving_dir = dir / Path('val')
mkdir_or_exist(saving_dir)
f = saving_dir / Path(url).name
unzip_dir = dir / Path('val')
mkdir_or_exist(unzip_dir)
else:
raise NotImplementedError
if Path(url).is_file():
Path(url).rename(f)
elif not f.exists():
print(f'Downloading {url} to {f}')
torch.hub.download_url_to_file(url, f, progress=True)
if unzip and str(f).endswith('.tar.gz'):
print(f'Unzipping {f.name}')
tar = tarfile.open(f)
tar.extractall(path=unzip_dir)
if delete:
f.unlink()
print(f'Delete {f}')
# process annotations
full_url = []
for _url in url:
if 'zhiyuan_objv2_train.tar.gz' in _url or \
'zhiyuan_objv2_val.json' in _url:
full_url.append(_url)
elif 'train' in _url:
for i in range(51):
full_url.append(f'{_url}patch{i}.tar.gz')
elif 'val/images/v1' in _url:
for i in range(16):
full_url.append(f'{_url}patch{i}.tar.gz')
elif 'val/images/v2' in _url:
for i in range(16, 44):
full_url.append(f'{_url}patch{i}.tar.gz')
else:
raise NotImplementedError
dir = Path(dir)
if threads > 1:
pool = ThreadPool(threads)
pool.imap(lambda x: download_single(*x), zip(full_url, repeat(dir)))
pool.close()
pool.join()
else:
for u in full_url:
download_single(u, dir)
def main():
args = parse_args()
path = Path(args.save_dir)
if not path.exists():
path.mkdir(parents=True, exist_ok=True)
data2url = dict(
# TODO: Support for downloading Panoptic Segmentation of COCO
coco2017=[
'http://images.cocodataset.org/zips/train2017.zip',
'http://images.cocodataset.org/zips/val2017.zip',
'http://images.cocodataset.org/zips/test2017.zip',
'http://images.cocodataset.org/zips/unlabeled2017.zip',
'http://images.cocodataset.org/annotations/annotations_trainval2017.zip', # noqa
'http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip', # noqa
'http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip', # noqa
'http://images.cocodataset.org/annotations/image_info_test2017.zip', # noqa
'http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip', # noqa
],
coco2014=[
'http://images.cocodataset.org/zips/train2014.zip',
'http://images.cocodataset.org/zips/val2014.zip',
'http://images.cocodataset.org/zips/test2014.zip',
'http://images.cocodataset.org/annotations/annotations_trainval2014.zip', # noqa
'http://images.cocodataset.org/annotations/image_info_test2014.zip' # noqa
],
lvis=[
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa
],
voc2007=[
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', # noqa
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar', # noqa
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar', # noqa
],
voc2012=[
'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar', # noqa
],
balloon=[
# src link: https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip # noqa
'https://download.openmmlab.com/mmyolo/data/balloon_dataset.zip'
],
# Note: There is no download link for Objects365-V1 right now. If you
# would like to download Objects365-V1, please visit
# http://www.objects365.org/ to concat the author.
objects365v2=[
# training annotations
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/zhiyuan_objv2_train.tar.gz', # noqa
# validation annotations
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/zhiyuan_objv2_val.json', # noqa
# training url root
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/', # noqa
# validation url root_1
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v1/', # noqa
# validation url root_2
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v2/' # noqa
],
ade20k_2016=[
# training images and semantic segmentation annotations
'http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip', # noqa
# instance segmentation annotations
'http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar', # noqa
# img categories ids
'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/imgCatIds.json', # noqa
# category mapping
'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/categoryMapping.txt' # noqa
],
refcoco=[
# images
'http://images.cocodataset.org/zips/train2014.zip',
# refcoco annotations
'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip',
# refcoco+ annotations
'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip',
# refcocog annotations
'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip'
])
url = data2url.get(args.dataset_name, None)
if url is None:
print('Only support ADE20K, COCO, RefCOCO, VOC, LVIS, '
'balloon, and Objects365v2 now!')
return
if args.dataset_name == 'objects365v2':
download_objects365v2(
url,
dir=path,
unzip=args.unzip,
delete=args.delete,
threads=args.threads)
else:
download(
url,
dir=path,
unzip=args.unzip,
delete=args.delete,
threads=args.threads)
if __name__ == '__main__':
main()
|