File size: 4,223 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import time
from typing import Optional, Sequence, Union

from mmengine.registry import HOOKS
from .hook import Hook

DATA_BATCH = Optional[Union[dict, tuple, list]]


@HOOKS.register_module()
class IterTimerHook(Hook):
    """A hook that logs the time spent during iteration.

    E.g. ``data_time`` for loading data and ``time`` for a model train step.
    """

    priority = 'NORMAL'

    def __init__(self):
        self.time_sec_tot = 0
        self.time_sec_test_val = 0
        self.start_iter = 0

    def before_train(self, runner) -> None:
        """Synchronize the number of iterations with the runner after resuming
        from checkpoints.

        Args:
            runner: The runner of the training, validation or testing
                process.
        """
        self.start_iter = runner.iter

    def _before_epoch(self, runner, mode: str = 'train') -> None:
        """Record timestamp before start an epoch.

        Args:
            runner (Runner): The runner of the training validation and
                testing process.
            mode (str): Current mode of runner. Defaults to 'train'.
        """
        self.t = time.time()

    def _after_epoch(self, runner, mode: str = 'train') -> None:
        self.time_sec_test_val = 0

    def _before_iter(self,
                     runner,
                     batch_idx: int,
                     data_batch: DATA_BATCH = None,
                     mode: str = 'train') -> None:
        """Calculating time for loading data and updating "data_time"
        ``HistoryBuffer`` of ``runner.message_hub``.

        Args:
            runner (Runner): The runner of the training, validation and
                testing process.
            batch_idx (int): The index of the current batch in the loop.
            data_batch (dict or tuple or list, optional): Data from
                dataloader.
            mode (str): Current mode of runner. Defaults to 'train'.
        """
        # Update data loading time in `runner.message_hub`.
        runner.message_hub.update_scalar(f'{mode}/data_time',
                                         time.time() - self.t)

    def _after_iter(self,
                    runner,
                    batch_idx: int,
                    data_batch: DATA_BATCH = None,
                    outputs: Optional[Union[dict, Sequence]] = None,
                    mode: str = 'train') -> None:
        """Calculating time for an iteration and updating "time"
        ``HistoryBuffer`` of ``runner.message_hub``.

        Args:
            runner (Runner): The runner of the training validation and
                testing process.
            batch_idx (int): The index of the current batch in the loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
            outputs (dict or sequence, optional): Outputs from model.
            mode (str): Current mode of runner. Defaults to 'train'.
        """
        # Update iteration time in `runner.message_hub`.
        message_hub = runner.message_hub
        message_hub.update_scalar(f'{mode}/time', time.time() - self.t)
        self.t = time.time()
        iter_time = message_hub.get_scalar(f'{mode}/time')
        if mode == 'train':
            self.time_sec_tot += iter_time.current()
            # Calculate average iterative time.
            time_sec_avg = self.time_sec_tot / (
                runner.iter - self.start_iter + 1)
            # Calculate eta.
            eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1)
            runner.message_hub.update_info('eta', eta_sec)
        else:
            if mode == 'val':
                cur_dataloader = runner.val_dataloader
            else:
                cur_dataloader = runner.test_dataloader

            self.time_sec_test_val += iter_time.current()
            time_sec_avg = self.time_sec_test_val / (batch_idx + 1)
            eta_sec = time_sec_avg * (len(cur_dataloader) - batch_idx - 1)
            runner.message_hub.update_info('eta', eta_sec)