File size: 53,019 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import functools
import logging
import os
import os.path as osp
import platform
import warnings
from abc import ABCMeta, abstractmethod
from collections.abc import MutableMapping
from typing import Any, Callable, List, Optional, Sequence, Union

import cv2
import numpy as np
import torch

from mmengine.config import Config, ConfigDict
from mmengine.fileio import dump
from mmengine.hooks.logger_hook import SUFFIX_TYPE
from mmengine.logging import MMLogger, print_log
from mmengine.registry import VISBACKENDS
from mmengine.utils import digit_version, scandir
from mmengine.utils.dl_utils import TORCH_VERSION


def force_init_env(old_func: Callable) -> Any:
    """Those methods decorated by ``force_init_env`` will be forced to call
    ``_init_env`` if the instance has not been fully initiated. This function
    will decorated all the `add_xxx` method and `experiment` method, because
    `VisBackend` is initialized only when used its API.

    Args:
        old_func (Callable): Decorated function, make sure the first arg is an
            instance with ``_init_env`` method.

    Returns:
        Any: Depends on old_func.
    """

    @functools.wraps(old_func)
    def wrapper(obj: object, *args, **kwargs):
        # The instance must have `_init_env` method.
        if not hasattr(obj, '_init_env'):
            raise AttributeError(f'{type(obj)} does not have _init_env '
                                 'method.')
        # If instance does not have `_env_initialized` attribute or
        # `_env_initialized` is False, call `_init_env` and set
        # `_env_initialized` to True
        if not getattr(obj, '_env_initialized', False):
            print_log(
                'Attribute `_env_initialized` is not defined in '
                f'{type(obj)} or `{type(obj)}._env_initialized is '
                'False, `_init_env` will be called and '
                f'{type(obj)}._env_initialized will be set to True',
                logger='current',
                level=logging.DEBUG)
            obj._init_env()  # type: ignore
            obj._env_initialized = True  # type: ignore

        return old_func(obj, *args, **kwargs)

    return wrapper


class BaseVisBackend(metaclass=ABCMeta):
    """Base class for visualization backend.

    All backends must inherit ``BaseVisBackend`` and implement
    the required functions.

    Args:
        save_dir (str, optional): The root directory to save
            the files produced by the backend.
    """

    def __init__(self, save_dir: str):
        self._save_dir = save_dir
        self._env_initialized = False

    @property
    @abstractmethod
    def experiment(self) -> Any:
        """Return the experiment object associated with this visualization
        backend.

        The experiment attribute can get the visualization backend, such as
        wandb, tensorboard. If you want to write other data, such as writing a
        table, you can directly get the visualization backend through
        experiment.
        """
        pass

    @abstractmethod
    def _init_env(self) -> Any:
        """Setup env for VisBackend."""
        pass

    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config.

        Args:
            config (Config): The Config object
        """
        pass

    def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict],
                  **kwargs) -> None:
        """Record the model graph.

        Args:
            model (torch.nn.Module): Model to draw.
            data_batch (Sequence[dict]): Batch of data from dataloader.
        """
        pass

    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB. Defaults to None.
            step (int): Global step value to record. Defaults to 0.
        """
        pass

    def add_scalar(self,
                   name: str,
                   value: Union[int, float],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar.

        Args:
            name (str): The scalar identifier.
            value (int, float): Value to save.
            step (int): Global step value to record. Defaults to 0.
        """
        pass

    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalars' data.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Defaults to 0.
            file_path (str, optional): The scalar's data will be
                saved to the `file_path` file at the same time
                if the `file_path` parameter is specified.
                Defaults to None.
        """
        pass

    def close(self) -> None:
        """close an opened object."""
        pass


@VISBACKENDS.register_module()
class LocalVisBackend(BaseVisBackend):
    """Local visualization backend class.

    It can write image, config, scalars, etc.
    to the local hard disk. You can get the drawing backend
    through the experiment property for custom drawing.

    Examples:
        >>> from mmengine.visualization import LocalVisBackend
        >>> import numpy as np
        >>> local_vis_backend = LocalVisBackend(save_dir='temp_dir')
        >>> img = np.random.randint(0, 256, size=(10, 10, 3))
        >>> local_vis_backend.add_image('img', img)
        >>> local_vis_backend.add_scalar('mAP', 0.6)
        >>> local_vis_backend.add_scalars({'loss': [1, 2, 3], 'acc': 0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> local_vis_backend.add_config(cfg)

    Args:
        save_dir (str, optional): The root directory to save the files
            produced by the visualizer. If it is none, it means no data
            is stored.
        img_save_dir (str): The directory to save images.
            Defaults to 'vis_image'.
        config_save_file (str): The file name to save config.
            Defaults to 'config.py'.
        scalar_save_file (str):  The file name to save scalar values.
            Defaults to 'scalars.json'.
    """

    def __init__(self,
                 save_dir: str,
                 img_save_dir: str = 'vis_image',
                 config_save_file: str = 'config.py',
                 scalar_save_file: str = 'scalars.json'):
        assert config_save_file.split('.')[-1] == 'py'
        assert scalar_save_file.split('.')[-1] == 'json'
        super().__init__(save_dir)
        self._img_save_dir = img_save_dir
        self._config_save_file = config_save_file
        self._scalar_save_file = scalar_save_file

    def _init_env(self):
        """Init save dir."""
        if not os.path.exists(self._save_dir):
            os.makedirs(self._save_dir, exist_ok=True)
        self._img_save_dir = osp.join(
            self._save_dir,  # type: ignore
            self._img_save_dir)
        self._config_save_file = osp.join(
            self._save_dir,  # type: ignore
            self._config_save_file)
        self._scalar_save_file = osp.join(
            self._save_dir,  # type: ignore
            self._scalar_save_file)

    @property  # type: ignore
    @force_init_env
    def experiment(self) -> 'LocalVisBackend':
        """Return the experiment object associated with this visualization
        backend."""
        return self

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to disk.

        Args:
            config (Config): The Config object
        """
        assert isinstance(config, Config)
        config.dump(self._config_save_file)

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.array,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image to disk.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB. Defaults to None.
            step (int): Global step value to record. Defaults to 0.
        """
        assert image.dtype == np.uint8
        drawn_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        os.makedirs(self._img_save_dir, exist_ok=True)
        save_file_name = f'{name}_{step}.png'
        cv2.imwrite(osp.join(self._img_save_dir, save_file_name), drawn_image)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to disk.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Global step value to record. Defaults to 0.
        """
        if isinstance(value, torch.Tensor):
            value = value.item()
        self._dump({name: value, 'step': step}, self._scalar_save_file, 'json')

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalars to disk.

        The scalar dict will be written to the default and
        specified files if ``file_path`` is specified.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values. The value must be dumped
                into json format.
            step (int): Global step value to record. Defaults to 0.
            file_path (str, optional): The scalar's data will be
                saved to the ``file_path`` file at the same time
                if the ``file_path`` parameter is specified.
                Defaults to None.
        """
        assert isinstance(scalar_dict, dict)
        scalar_dict = copy.deepcopy(scalar_dict)
        scalar_dict.setdefault('step', step)

        if file_path is not None:
            assert file_path.split('.')[-1] == 'json'
            new_save_file_path = osp.join(
                self._save_dir,  # type: ignore
                file_path)
            assert new_save_file_path != self._scalar_save_file, \
                '``file_path`` and ``scalar_save_file`` have the ' \
                'same name, please set ``file_path`` to another value'
            self._dump(scalar_dict, new_save_file_path, 'json')
        self._dump(scalar_dict, self._scalar_save_file, 'json')

    def _dump(self, value_dict: dict, file_path: str,
              file_format: str) -> None:
        """dump dict to file.

        Args:
           value_dict (dict) : The dict data to saved.
           file_path (str): The file path to save data.
           file_format (str): The file format to save data.
        """
        with open(file_path, 'a+') as f:
            dump(value_dict, f, file_format=file_format)
            f.write('\n')


@VISBACKENDS.register_module()
class WandbVisBackend(BaseVisBackend):
    """Wandb visualization backend class.

    Examples:
        >>> from mmengine.visualization import WandbVisBackend
        >>> import numpy as np
        >>> wandb_vis_backend = WandbVisBackend()
        >>> img=np.random.randint(0, 256, size=(10, 10, 3))
        >>> wandb_vis_backend.add_image('img', img)
        >>> wandb_vis_backend.add_scaler('mAP', 0.6)
        >>> wandb_vis_backend.add_scalars({'loss': [1, 2, 3],'acc': 0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> wandb_vis_backend.add_config(cfg)

    Args:
        save_dir (str, optional): The root directory to save the files
            produced by the visualizer.
        init_kwargs (dict, optional): wandb initialization
            input parameters.
            See `wandb.init <https://docs.wandb.ai/ref/python/init>`_ for
            details. Defaults to None.
        define_metric_cfg (dict or list[dict], optional):
            When a dict is set, it is a dict of metrics and summary for
            ``wandb.define_metric``.
            The key is metric and the value is summary.
            When a list is set, each dict should be a valid argument of
            the ``define_metric``.
            For example, ``define_metric_cfg={'coco/bbox_mAP': 'max'}``,
            means the maximum value of ``coco/bbox_mAP`` is logged on wandb UI.
            When ``define_metric_cfg=[dict(name='loss',
            step_metric='epoch')]``,
            the "loss" will be plotted against the epoch.
            See `wandb define_metric <https://docs.wandb.ai/ref/python/
            run#define_metric>`_ for details.
            Defaults to None.
        commit (bool, optional) Save the metrics dict to the wandb server
            and increment the step.  If false `wandb.log` just updates the
            current metrics dict with the row argument and metrics won't be
            saved until `wandb.log` is called with `commit=True`.
            Defaults to True.
        log_code_name (str, optional) The name of code artifact.
            By default, the artifact will be named
            source-$PROJECT_ID-$ENTRYPOINT_RELPATH. See
            `wandb log_code <https://docs.wandb.ai/ref/python/run#log_code>`_
            for details. Defaults to None.
            `New in version 0.3.0.`
        watch_kwargs (optional, dict): Agurments for ``wandb.watch``.
            `New in version 0.4.0.`
    """

    def __init__(self,
                 save_dir: str,
                 init_kwargs: Optional[dict] = None,
                 define_metric_cfg: Union[dict, list, None] = None,
                 commit: Optional[bool] = True,
                 log_code_name: Optional[str] = None,
                 watch_kwargs: Optional[dict] = None):
        super().__init__(save_dir)
        self._init_kwargs = init_kwargs
        self._define_metric_cfg = define_metric_cfg
        self._commit = commit
        self._log_code_name = log_code_name
        self._watch_kwargs = watch_kwargs if watch_kwargs is not None else {}

    def _init_env(self):
        """Setup env for wandb."""
        if not os.path.exists(self._save_dir):
            os.makedirs(self._save_dir, exist_ok=True)  # type: ignore
        if self._init_kwargs is None:
            self._init_kwargs = {'dir': self._save_dir}
        else:
            self._init_kwargs.setdefault('dir', self._save_dir)
        try:
            import wandb
        except ImportError:
            raise ImportError(
                'Please run "pip install wandb" to install wandb')

        wandb.init(**self._init_kwargs)
        if self._define_metric_cfg is not None:
            if isinstance(self._define_metric_cfg, dict):
                for metric, summary in self._define_metric_cfg.items():
                    wandb.define_metric(metric, summary=summary)
            elif isinstance(self._define_metric_cfg, list):
                for metric_cfg in self._define_metric_cfg:
                    wandb.define_metric(**metric_cfg)
            else:
                raise ValueError('define_metric_cfg should be dict or list')
        self._wandb = wandb

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return wandb object.

        The experiment attribute can get the wandb backend, If you want to
        write other data, such as writing a table, you can directly get the
        wandb backend through experiment.
        """
        return self._wandb

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to wandb.

        Args:
            config (Config): The Config object
        """
        assert isinstance(self._init_kwargs, dict)
        allow_val_change = self._init_kwargs.get('allow_val_change', False)
        self._wandb.config.update(
            dict(config), allow_val_change=allow_val_change)
        self._wandb.run.log_code(name=self._log_code_name)

    @force_init_env
    def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict],
                  **kwargs) -> None:
        """Record the model graph.

        Args:
            model (torch.nn.Module): Model to draw.
            data_batch (Sequence[dict]): Batch of data from dataloader.
        """
        self._wandb.watch(model, **self._watch_kwargs)

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image to wandb.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB.
            step (int): Useless parameter. Wandb does not
                need this parameter. Defaults to 0.
        """
        image = self._wandb.Image(image)
        self._wandb.log({name: image}, commit=self._commit)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to wandb.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Useless parameter. Wandb does not
                need this parameter. Defaults to 0.
        """
        self._wandb.log({name: value}, commit=self._commit)

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalar's data to wandb.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Useless parameter. Wandb does not
                need this parameter. Defaults to 0.
            file_path (str, optional): Useless parameter. Just for
                interface unification. Defaults to None.
        """
        self._wandb.log(scalar_dict, commit=self._commit)

    def close(self) -> None:
        """close an opened wandb object."""
        if hasattr(self, '_wandb'):
            self._wandb.join()


@VISBACKENDS.register_module()
class TensorboardVisBackend(BaseVisBackend):
    """Tensorboard visualization backend class.

    It can write images, config, scalars, etc. to a
    tensorboard file.

    Examples:
        >>> from mmengine.visualization import TensorboardVisBackend
        >>> import numpy as np
        >>> vis_backend = TensorboardVisBackend(save_dir='temp_dir')
        >>> img = np.random.randint(0, 256, size=(10, 10, 3))
        >>> vis_backend.add_image('img', img)
        >>> vis_backend.add_scaler('mAP', 0.6)
        >>> vis_backend.add_scalars({'loss': 0.1,'acc':0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> vis_backend.add_config(cfg)

    Args:
        save_dir (str): The root directory to save the files
            produced by the backend.
    """

    def __init__(self, save_dir: str):
        super().__init__(save_dir)

    def _init_env(self):
        """Setup env for Tensorboard."""
        if not os.path.exists(self._save_dir):
            os.makedirs(self._save_dir, exist_ok=True)  # type: ignore
        if TORCH_VERSION == 'parrots':
            try:
                from tensorboardX import SummaryWriter
            except ImportError:
                raise ImportError('Please install tensorboardX to use '
                                  'TensorboardLoggerHook.')
        else:
            try:
                from torch.utils.tensorboard import SummaryWriter
            except ImportError:
                raise ImportError(
                    'Please run "pip install future tensorboard" to install '
                    'the dependencies to use torch.utils.tensorboard '
                    '(applicable to PyTorch 1.1 or higher)')
        self._tensorboard = SummaryWriter(self._save_dir)

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return Tensorboard object."""
        return self._tensorboard

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to tensorboard.

        Args:
            config (Config): The Config object
        """
        self._tensorboard.add_text('config', config.pretty_text)

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image to tensorboard.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB.
            step (int): Global step value to record. Defaults to 0.
        """
        self._tensorboard.add_image(name, image, step, dataformats='HWC')

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to tensorboard.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Global step value to record. Defaults to 0.
        """
        if isinstance(value,
                      (int, float, torch.Tensor, np.ndarray, np.number)):
            self._tensorboard.add_scalar(name, value, step)
        else:
            warnings.warn(f'Got {type(value)}, but numpy array, torch tensor, '
                          f'int or float are expected. skip it!')

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalar's data to tensorboard.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Defaults to 0.
            file_path (str, optional): Useless parameter. Just for
                interface unification. Defaults to None.
        """
        assert isinstance(scalar_dict, dict)
        assert 'step' not in scalar_dict, 'Please set it directly ' \
                                          'through the step parameter'
        for key, value in scalar_dict.items():
            self.add_scalar(key, value, step)

    def close(self):
        """close an opened tensorboard object."""
        if hasattr(self, '_tensorboard'):
            self._tensorboard.close()


@VISBACKENDS.register_module()
class MLflowVisBackend(BaseVisBackend):
    """MLflow visualization backend class.

    It can write images, config, scalars, etc. to a
    mlflow file.

    Examples:
        >>> from mmengine.visualization import MLflowVisBackend
        >>> from mmengine import Config
        >>> import numpy as np
        >>> vis_backend = MLflowVisBackend(save_dir='temp_dir')
        >>> img = np.random.randint(0, 256, size=(10, 10, 3))
        >>> vis_backend.add_image('img.png', img)
        >>> vis_backend.add_scalar('mAP', 0.6)
        >>> vis_backend.add_scalars({'loss': 0.1,'acc':0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> vis_backend.add_config(cfg)

    Args:
        save_dir (str): The root directory to save the files
            produced by the backend.
        exp_name (str, optional): The experiment name. Defaults to None.
        run_name (str, optional): The run name. Defaults to None.
        tags (dict, optional): The tags to be added to the experiment.
            Defaults to None.
        params (dict, optional): The params to be added to the experiment.
            Defaults to None.
        tracking_uri (str, optional): The tracking uri. Defaults to None.
        artifact_suffix (Tuple[str] or str, optional): The artifact suffix.
            Defaults to ('.json', '.log', '.py', 'yaml').
        tracked_config_keys (dict, optional): The top level keys of config that
            will be added to the experiment. If it is None, which means all
            the config will be added. Defaults to None.
            `New in version 0.7.4.`
    """

    def __init__(self,
                 save_dir: str,
                 exp_name: Optional[str] = None,
                 run_name: Optional[str] = None,
                 tags: Optional[dict] = None,
                 params: Optional[dict] = None,
                 tracking_uri: Optional[str] = None,
                 artifact_suffix: SUFFIX_TYPE = ('.json', '.log', '.py',
                                                 'yaml'),
                 tracked_config_keys: Optional[dict] = None):
        super().__init__(save_dir)
        self._exp_name = exp_name
        self._run_name = run_name
        self._tags = tags
        self._params = params
        self._tracking_uri = tracking_uri
        self._artifact_suffix = artifact_suffix
        self._tracked_config_keys = tracked_config_keys

    def _init_env(self):
        """Setup env for MLflow."""
        if not os.path.exists(self._save_dir):
            os.makedirs(self._save_dir, exist_ok=True)  # type: ignore

        try:
            import mlflow
        except ImportError:
            raise ImportError(
                'Please run "pip install mlflow" to install mlflow'
            )  # type: ignore
        self._mlflow = mlflow

        # when mlflow is imported, a default logger is created.
        # at this time, the default logger's stream is None
        # so the stream is reopened only when the stream is None
        # or the stream is closed
        logger = MMLogger.get_current_instance()
        for handler in logger.handlers:
            if handler.stream is None or handler.stream.closed:
                handler.stream = open(handler.baseFilename, 'a')

        if self._tracking_uri is not None:
            logger.warning(
                'Please make sure that the mlflow server is running.')
            self._mlflow.set_tracking_uri(self._tracking_uri)
        else:
            if os.name == 'nt':
                file_url = f'file:\\{os.path.abspath(self._save_dir)}'
            else:
                file_url = f'file://{os.path.abspath(self._save_dir)}'
            self._mlflow.set_tracking_uri(file_url)

        self._exp_name = self._exp_name or 'Default'

        if self._mlflow.get_experiment_by_name(self._exp_name) is None:
            self._mlflow.create_experiment(self._exp_name)

        self._mlflow.set_experiment(self._exp_name)

        if self._run_name is not None:
            self._mlflow.set_tag('mlflow.runName', self._run_name)
        if self._tags is not None:
            self._mlflow.set_tags(self._tags)
        if self._params is not None:
            self._mlflow.log_params(self._params)

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return MLflow object."""
        return self._mlflow

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to mlflow.

        Args:
            config (Config): The Config object
        """
        self.cfg = config
        if self._tracked_config_keys is None:
            self._mlflow.log_params(self._flatten(self.cfg))
        else:
            tracked_cfg = dict()
            for k in self._tracked_config_keys:
                tracked_cfg[k] = self.cfg[k]
            self._mlflow.log_params(self._flatten(tracked_cfg))
        self._mlflow.log_text(self.cfg.pretty_text, 'config.py')

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image to mlflow.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB.
            step (int): Global step value to record. Default to 0.
        """
        self._mlflow.log_image(image, name)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to mlflow.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Global step value to record. Default to 0.
        """
        self._mlflow.log_metric(name, value, step)

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalar's data to mlflow.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Default to 0.
            file_path (str, optional): Useless parameter. Just for
                interface unification. Defaults to None.
        """
        assert isinstance(scalar_dict, dict)
        assert 'step' not in scalar_dict, 'Please set it directly ' \
                                          'through the step parameter'
        self._mlflow.log_metrics(scalar_dict, step)

    def close(self) -> None:
        """Close the mlflow."""
        if not hasattr(self, '_mlflow'):
            return

        file_paths = dict()
        for filename in scandir(self.cfg.work_dir, self._artifact_suffix,
                                True):
            file_path = osp.join(self.cfg.work_dir, filename)
            relative_path = os.path.relpath(file_path, self.cfg.work_dir)
            dir_path = os.path.dirname(relative_path)
            file_paths[file_path] = dir_path

        for file_path, dir_path in file_paths.items():
            self._mlflow.log_artifact(file_path, dir_path)

        self._mlflow.end_run()

    def _flatten(self, d, parent_key='', sep='.') -> dict:
        """Flatten the dict."""
        items = dict()
        for k, v in d.items():
            new_key = parent_key + sep + k if parent_key else k
            if isinstance(v, MutableMapping):
                items.update(self._flatten(v, new_key, sep=sep))
            elif isinstance(v, list):
                if any(isinstance(x, dict) for x in v):
                    for i, x in enumerate(v):
                        items.update(
                            self._flatten(x, new_key + sep + str(i), sep=sep))
                else:
                    items[new_key] = v
            else:
                items[new_key] = v
        return items


@VISBACKENDS.register_module()
class ClearMLVisBackend(BaseVisBackend):
    """Clearml visualization backend class. It requires `clearml`_ to be
    installed.

    Examples:
        >>> from mmengine.visualization import ClearMLVisBackend
        >>> from mmengine import Config
        >>> import numpy as np
        >>> vis_backend = ClearMLVisBackend(save_dir='temp_dir')
        >>> img = np.random.randint(0, 256, size=(10, 10, 3))
        >>> vis_backend.add_image('img.png', img)
        >>> vis_backend.add_scalar('mAP', 0.6)
        >>> vis_backend.add_scalars({'loss': 0.1,'acc':0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> vis_backend.add_config(cfg)

    Args:
        save_dir (str, optional): Useless parameter. Just for
            interface unification. Defaults to None.
        init_kwargs (dict, optional): A dict contains the arguments of
            ``clearml.Task.init`` . See `taskinit`_  for more details.
            Defaults to None
        artifact_suffix (Tuple[str] or str): The artifact suffix.
            Defaults to ('.py', 'pth').

    .. _clearml:
        https://clear.ml/docs/latest/docs/

    .. _taskinit:
        https://clear.ml/docs/latest/docs/references/sdk/task/#taskinit
    """

    def __init__(self,
                 save_dir: Optional[str] = None,
                 init_kwargs: Optional[dict] = None,
                 artifact_suffix: SUFFIX_TYPE = ('.py', '.pth')):
        super().__init__(save_dir)  # type: ignore
        self._init_kwargs = init_kwargs
        self._artifact_suffix = artifact_suffix

    def _init_env(self) -> None:
        try:
            import clearml
        except ImportError:
            raise ImportError(
                'Please run "pip install clearml" to install clearml')

        task_kwargs = self._init_kwargs or {}
        self._clearml = clearml
        self._task = self._clearml.Task.init(**task_kwargs)
        self._logger = self._task.get_logger()

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return clearml object."""
        return self._clearml

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to clearml.

        Args:
            config (Config): The Config object
        """
        self.cfg = config
        self._task.connect_configuration(vars(config))

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image to clearml.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB.
            step (int): Global step value to record. Defaults to 0.
        """
        self._logger.report_image(
            title=name, series=name, iteration=step, image=image)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to clearml.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Global step value to record. Defaults to 0.
        """
        self._logger.report_scalar(
            title=name, series=name, value=value, iteration=step)

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalar's data to clearml.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Defaults to 0.
            file_path (str, optional): Useless parameter. Just for
                interface unification. Defaults to None.
        """
        assert 'step' not in scalar_dict, 'Please set it directly ' \
                                          'through the step parameter'
        for key, value in scalar_dict.items():
            self._logger.report_scalar(
                title=key, series=key, value=value, iteration=step)

    def close(self) -> None:
        """Close the clearml."""
        if not hasattr(self, '_clearml'):
            return

        file_paths: List[str] = list()
        if (hasattr(self, 'cfg')
                and osp.isdir(getattr(self.cfg, 'work_dir', ''))):
            for filename in scandir(self.cfg.work_dir, self._artifact_suffix,
                                    False):
                file_path = osp.join(self.cfg.work_dir, filename)
                file_paths.append(file_path)

        for file_path in file_paths:
            self._task.upload_artifact(os.path.basename(file_path), file_path)
        self._task.close()


@VISBACKENDS.register_module()
class NeptuneVisBackend(BaseVisBackend):
    """Neptune visualization backend class.

    Examples:
        >>> from mmengine.visualization import NeptuneVisBackend
        >>> from mmengine import Config
        >>> import numpy as np
        >>> init_kwargs = {'project': 'your_project_name'}
        >>> neptune_vis_backend = NeptuneVisBackend(init_kwargs=init_kwargs)
        >>> img = np.random.randint(0, 256, size=(10, 10, 3))
        >>> neptune_vis_backend.add_image('img', img)
        >>> neptune_vis_backend.add_scalar('mAP', 0.6)
        >>> neptune_vis_backend.add_scalars({'loss': 0.1, 'acc': 0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> neptune_vis_backend.add_config(cfg)

    Note:
        `New in version 0.8.5.`

    Args:
        save_dir (str, optional): The root directory to save the files
            produced by the visualizer. NeptuneVisBackend does
            not require this argument. Defaults to None.
        init_kwargs (dict, optional): Neptune initialization parameters.
            Defaults to None.

            - project (str): Name of a project in a form of
              `namespace/project_name`. If `project` is not specified,
              the value of `NEPTUNE_PROJECT` environment variable
              will be taken.
            - api_token (str): User's API token. If api_token is not api_token,
              the value of `NEPTUNE_API_TOKEN` environment variable will
              be taken. Note: It is strongly recommended to use
              `NEPTUNE_API_TOKEN` environment variable rather than
              placing your API token here.

            If 'project' and 'api_token are not specified in `init_kwargs`,
            the 'mode' will be set to 'offline'.
            See `neptune.init_run
            <https://docs.neptune.ai/api/neptune/#init_run>`_ for
            details.
    """

    def __init__(self,
                 save_dir: Optional[str] = None,
                 init_kwargs: Optional[dict] = None):
        super().__init__(save_dir)  # type:ignore
        self._init_kwargs = init_kwargs

    def _init_env(self):
        """Setup env for neptune."""
        try:
            import neptune
        except ImportError:
            raise ImportError(
                'Please run "pip install -U neptune" to install neptune')
        if self._init_kwargs is None:
            self._init_kwargs = {'mode': 'offline'}

        self._neptune = neptune.init_run(**self._init_kwargs)

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return Neptune object."""
        return self._neptune

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to neptune.

        Args:
            config (Config): The Config object
        """
        from neptune.types import File
        self._neptune['config'].upload(File.from_content(config.pretty_text))

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB. Defaults to None.
            step (int): Global step value to record. Defaults to 0.
        """
        from neptune.types import File

        # values in the array need to be in the [0, 1] range
        img = image.astype(np.float32) / 255.0
        self._neptune['images'].append(
            File.as_image(img), name=name, step=step)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar.

        Args:
            name (str): The scalar identifier.
            value (int, float): Value to save.
            step (int): Global step value to record. Defaults to 0.
        """
        self._neptune[name].append(value, step=step)

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalars' data.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Defaults to 0.
            file_path (str, optional): The scalar's data will be
                saved to the `file_path` file at the same time
                if the `file_path` parameter is specified.
                Defaults to None.
        """
        assert isinstance(scalar_dict, dict)
        assert 'step' not in scalar_dict, 'Please set it directly ' \
                                          'through the step parameter'

        for k, v in scalar_dict.items():
            self._neptune[k].append(v, step=step)

    def close(self) -> None:
        """close an opened object."""
        if hasattr(self, '_neptune'):
            self._neptune.stop()


@VISBACKENDS.register_module()
class DVCLiveVisBackend(BaseVisBackend):
    """DVCLive visualization backend class.

    Examples:
        >>> from mmengine.visualization import DVCLiveVisBackend
        >>> import numpy as np
        >>> dvclive_vis_backend = DVCLiveVisBackend(save_dir='temp_dir')
        >>> img=np.random.randint(0, 256, size=(10, 10, 3))
        >>> dvclive_vis_backend.add_image('img', img)
        >>> dvclive_vis_backend.add_scalar('mAP', 0.6)
        >>> dvclive_vis_backend.add_scalars({'loss': 0.1, 'acc': 0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> dvclive_vis_backend.add_config(cfg)

    Note:
        `New in version 0.8.5.`

    Args:
        save_dir (str, optional): The root directory to save the files
            produced by the visualizer.
        artifact_suffix (Tuple[str] or str, optional): The artifact suffix.
            Defaults to ('.json', '.py', 'yaml').
        init_kwargs (dict, optional): DVCLive initialization parameters.
            See `DVCLive <https://dvc.org/doc/dvclive/live>`_ for details.
            Defaults to None.
    """

    def __init__(self,
                 save_dir: str,
                 artifact_suffix: SUFFIX_TYPE = ('.json', '.py', 'yaml'),
                 init_kwargs: Optional[dict] = None):
        super().__init__(save_dir)
        self._artifact_suffix = artifact_suffix
        self._init_kwargs = init_kwargs

    def _init_env(self):
        """Setup env for dvclive."""
        if digit_version(platform.python_version()) < digit_version('3.8'):
            raise RuntimeError('Please use Python 3.8 or higher version '
                               'to use DVCLiveVisBackend.')

        try:
            import pygit2
            from dvclive import Live
        except ImportError:
            raise ImportError(
                'Please run "pip install dvclive" to install dvclive')
        # if no git info, init dvc without git to avoid SCMError
        try:
            path = pygit2.discover_repository(os.fspath(os.curdir), True, '')
            pygit2.Repository(path).default_signature
        except KeyError:
            os.system('dvc init -f --no-scm')

        if self._init_kwargs is None:
            self._init_kwargs = {}
        self._init_kwargs.setdefault('dir', self._save_dir)
        self._init_kwargs.setdefault('save_dvc_exp', True)
        self._init_kwargs.setdefault('cache_images', True)

        self._dvclive = Live(**self._init_kwargs)

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return dvclive object.

        The experiment attribute can get the dvclive backend, If you want to
        write other data, such as writing a table, you can directly get the
        dvclive backend through experiment.
        """
        return self._dvclive

    @force_init_env
    def add_config(self, config: Config, **kwargs) -> None:
        """Record the config to dvclive.

        Args:
            config (Config): The Config object
        """
        assert isinstance(config, Config)
        self.cfg = config
        self._dvclive.log_params(self._to_dvc_paramlike(self.cfg))

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image to dvclive.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB.
            step (int): Useless parameter. Dvclive does not
                need this parameter. Defaults to 0.
        """
        assert image.dtype == np.uint8
        save_file_name = f'{name}.png'

        self._dvclive.log_image(save_file_name, image)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to dvclive.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Global step value to record. Defaults to 0.
        """
        if isinstance(value, torch.Tensor):
            value = value.numpy()
        self._dvclive.step = step
        self._dvclive.log_metric(name, value)

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalar's data to dvclive.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Defaults to 0.
            file_path (str, optional): Useless parameter. Just for
                interface unification. Defaults to None.
        """
        for key, value in scalar_dict.items():
            self.add_scalar(key, value, step, **kwargs)

    def close(self) -> None:
        """close an opened dvclive object."""
        if not hasattr(self, '_dvclive'):
            return

        file_paths = dict()
        for filename in scandir(self._save_dir, self._artifact_suffix, True):
            file_path = osp.join(self._save_dir, filename)
            relative_path = os.path.relpath(file_path, self._save_dir)
            dir_path = os.path.dirname(relative_path)
            file_paths[file_path] = dir_path

        for file_path, dir_path in file_paths.items():
            self._dvclive.log_artifact(file_path, dir_path)

        self._dvclive.end()

    def _to_dvc_paramlike(self,
                          value: Union[int, float, dict, list, tuple, Config,
                                       ConfigDict, torch.Tensor, np.ndarray]):
        """Convert the input value to a DVC `ParamLike` recursively.

        Or the `log_params` method of dvclive will raise an error.
        """

        if isinstance(value, (dict, Config, ConfigDict)):
            return {k: self._to_dvc_paramlike(v) for k, v in value.items()}
        elif isinstance(value, (tuple, list)):
            return [self._to_dvc_paramlike(item) for item in value]
        elif isinstance(value, (torch.Tensor, np.ndarray)):
            return value.tolist()
        elif isinstance(value, np.generic):
            return value.item()
        else:
            return value


@VISBACKENDS.register_module()
class AimVisBackend(BaseVisBackend):
    """Aim visualization backend class.

    Examples:
        >>> from mmengine.visualization import AimVisBackend
        >>> import numpy as np
        >>> aim_vis_backend = AimVisBackend()
        >>> img=np.random.randint(0, 256, size=(10, 10, 3))
        >>> aim_vis_backend.add_image('img', img)
        >>> aim_vis_backend.add_scalar('mAP', 0.6)
        >>> aim_vis_backend.add_scalars({'loss': 0.1, 'acc': 0.8})
        >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
        >>> aim_vis_backend.add_config(cfg)

    Note:
        1. `New in version 0.8.5.`
        2. Refer to
           `Github issue <https://github.com/aimhubio/aim/issues/2064>`_ ,
           Aim is not unable to be install on Windows for now.

    Args:
        save_dir (str, optional): The root directory to save the files
            produced by the visualizer.
        init_kwargs (dict, optional): Aim initialization parameters. See
            `Aim <https://aimstack.readthedocs.io/en/latest/refs/sdk.html>`_
            for details. Defaults to None.
    """

    def __init__(self,
                 save_dir: Optional[str] = None,
                 init_kwargs: Optional[dict] = None):
        super().__init__(save_dir)  # type:ignore
        self._init_kwargs = init_kwargs

    def _init_env(self):
        """Setup env for Aim."""
        try:
            from aim import Run
        except ImportError:
            raise ImportError('Please run "pip install aim" to install aim')

        from datetime import datetime

        if self._save_dir is not None:
            path_list = os.path.normpath(self._save_dir).split(os.sep)
            exp_name = f'{path_list[-2]}_{path_list[-1]}'
        else:
            exp_name = datetime.now().strftime('%Y%m%d_%H%M%S')

        if self._init_kwargs is None:
            self._init_kwargs = {}
        self._init_kwargs.setdefault('experiment', exp_name)
        self._aim_run = Run(**self._init_kwargs)

    @property  # type: ignore
    @force_init_env
    def experiment(self):
        """Return Aim object."""
        return self._aim_run

    @force_init_env
    def add_config(self, config, **kwargs) -> None:
        """Record the config to Aim.

        Args:
            config (Config): The Config object
        """
        if isinstance(config, Config):
            config = config.to_dict()
        self._aim_run['hparams'] = config

    @force_init_env
    def add_image(self,
                  name: str,
                  image: np.ndarray,
                  step: int = 0,
                  **kwargs) -> None:
        """Record the image.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to be saved. The format
                should be RGB. Defaults to None.
            step (int): Global step value to record. Defaults to 0.
        """
        from aim import Image
        self._aim_run.track(name=name, value=Image(image), step=step)

    @force_init_env
    def add_scalar(self,
                   name: str,
                   value: Union[int, float, torch.Tensor, np.ndarray],
                   step: int = 0,
                   **kwargs) -> None:
        """Record the scalar data to Aim.

        Args:
            name (str): The scalar identifier.
            value (int, float, torch.Tensor, np.ndarray): Value to save.
            step (int): Global step value to record. Default to 0.
        """
        self._aim_run.track(name=name, value=value, step=step)

    @force_init_env
    def add_scalars(self,
                    scalar_dict: dict,
                    step: int = 0,
                    file_path: Optional[str] = None,
                    **kwargs) -> None:
        """Record the scalar's data to wandb.

        Args:
            scalar_dict (dict): Key-value pair storing the tag and
                corresponding values.
            step (int): Global step value to record. Default to 0.
            file_path (str, optional): Useless parameter. Just for
                interface unification. Defaults to None.
        """
        for key, value in scalar_dict.items():
            self._aim_run.track(name=key, value=value, step=step)

    def close(self) -> None:
        """Close the Aim."""
        if not hasattr(self, '_aim_run'):
            return

        self._aim_run.close()