Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from abc import ABCMeta, abstractmethod, abstractproperty, abstractstaticmethod | |
from typing import List, Optional, Sequence, Tuple, Type, TypeVar, Union | |
import numpy as np | |
import torch | |
from torch import BoolTensor, Tensor | |
from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks | |
T = TypeVar('T') | |
DeviceType = Union[str, torch.device] | |
IndexType = Union[slice, int, list, torch.LongTensor, torch.cuda.LongTensor, | |
torch.BoolTensor, torch.cuda.BoolTensor, np.ndarray] | |
MaskType = Union[BitmapMasks, PolygonMasks] | |
class BaseBoxes(metaclass=ABCMeta): | |
"""The base class for 2D box types. | |
The functions of ``BaseBoxes`` lie in three fields: | |
- Verify the boxes shape. | |
- Support tensor-like operations. | |
- Define abstract functions for 2D boxes. | |
In ``__init__`` , ``BaseBoxes`` verifies the validity of the data shape | |
w.r.t ``box_dim``. The tensor with the dimension >= 2 and the length | |
of the last dimension being ``box_dim`` will be regarded as valid. | |
``BaseBoxes`` will restore them at the field ``tensor``. It's necessary | |
to override ``box_dim`` in subclass to guarantee the data shape is | |
correct. | |
There are many basic tensor-like functions implemented in ``BaseBoxes``. | |
In most cases, users can operate ``BaseBoxes`` instance like a normal | |
tensor. To protect the validity of data shape, All tensor-like functions | |
cannot modify the last dimension of ``self.tensor``. | |
When creating a new box type, users need to inherit from ``BaseBoxes`` | |
and override abstract methods and specify the ``box_dim``. Then, register | |
the new box type by using the decorator ``register_box_type``. | |
Args: | |
data (Tensor or np.ndarray or Sequence): The box data with shape | |
(..., box_dim). | |
dtype (torch.dtype, Optional): data type of boxes. Defaults to None. | |
device (str or torch.device, Optional): device of boxes. | |
Default to None. | |
clone (bool): Whether clone ``boxes`` or not. Defaults to True. | |
""" | |
# Used to verify the last dimension length | |
# Should override it in subclass. | |
box_dim: int = 0 | |
def __init__(self, | |
data: Union[Tensor, np.ndarray, Sequence], | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[DeviceType] = None, | |
clone: bool = True) -> None: | |
if isinstance(data, (np.ndarray, Tensor, Sequence)): | |
data = torch.as_tensor(data) | |
else: | |
raise TypeError('boxes should be Tensor, ndarray, or Sequence, ', | |
f'but got {type(data)}') | |
if device is not None or dtype is not None: | |
data = data.to(dtype=dtype, device=device) | |
# Clone the data to avoid potential bugs | |
if clone: | |
data = data.clone() | |
# handle the empty input like [] | |
if data.numel() == 0: | |
data = data.reshape((-1, self.box_dim)) | |
assert data.dim() >= 2 and data.size(-1) == self.box_dim, \ | |
('The boxes dimension must >= 2 and the length of the last ' | |
f'dimension must be {self.box_dim}, but got boxes with ' | |
f'shape {data.shape}.') | |
self.tensor = data | |
def convert_to(self, dst_type: Union[str, type]) -> 'BaseBoxes': | |
"""Convert self to another box type. | |
Args: | |
dst_type (str or type): destination box type. | |
Returns: | |
:obj:`BaseBoxes`: destination box type object . | |
""" | |
from .box_type import convert_box_type | |
return convert_box_type(self, dst_type=dst_type) | |
def empty_boxes(self: T, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[DeviceType] = None) -> T: | |
"""Create empty box. | |
Args: | |
dtype (torch.dtype, Optional): data type of boxes. | |
device (str or torch.device, Optional): device of boxes. | |
Returns: | |
T: empty boxes with shape of (0, box_dim). | |
""" | |
empty_box = self.tensor.new_zeros( | |
0, self.box_dim, dtype=dtype, device=device) | |
return type(self)(empty_box, clone=False) | |
def fake_boxes(self: T, | |
sizes: Tuple[int], | |
fill: float = 0, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[DeviceType] = None) -> T: | |
"""Create fake boxes with specific sizes and fill values. | |
Args: | |
sizes (Tuple[int]): The size of fake boxes. The last value must | |
be equal with ``self.box_dim``. | |
fill (float): filling value. Defaults to 0. | |
dtype (torch.dtype, Optional): data type of boxes. | |
device (str or torch.device, Optional): device of boxes. | |
Returns: | |
T: Fake boxes with shape of ``sizes``. | |
""" | |
fake_boxes = self.tensor.new_full( | |
sizes, fill, dtype=dtype, device=device) | |
return type(self)(fake_boxes, clone=False) | |
def __getitem__(self: T, index: IndexType) -> T: | |
"""Rewrite getitem to protect the last dimension shape.""" | |
boxes = self.tensor | |
if isinstance(index, np.ndarray): | |
index = torch.as_tensor(index, device=self.device) | |
if isinstance(index, Tensor) and index.dtype == torch.bool: | |
assert index.dim() < boxes.dim() | |
elif isinstance(index, tuple): | |
assert len(index) < boxes.dim() | |
# `Ellipsis`(...) is commonly used in index like [None, ...]. | |
# When `Ellipsis` is in index, it must be the last item. | |
if Ellipsis in index: | |
assert index[-1] is Ellipsis | |
boxes = boxes[index] | |
if boxes.dim() == 1: | |
boxes = boxes.reshape(1, -1) | |
return type(self)(boxes, clone=False) | |
def __setitem__(self: T, index: IndexType, values: Union[Tensor, T]) -> T: | |
"""Rewrite setitem to protect the last dimension shape.""" | |
assert type(values) is type(self), \ | |
'The value to be set must be the same box type as self' | |
values = values.tensor | |
if isinstance(index, np.ndarray): | |
index = torch.as_tensor(index, device=self.device) | |
if isinstance(index, Tensor) and index.dtype == torch.bool: | |
assert index.dim() < self.tensor.dim() | |
elif isinstance(index, tuple): | |
assert len(index) < self.tensor.dim() | |
# `Ellipsis`(...) is commonly used in index like [None, ...]. | |
# When `Ellipsis` is in index, it must be the last item. | |
if Ellipsis in index: | |
assert index[-1] is Ellipsis | |
self.tensor[index] = values | |
def __len__(self) -> int: | |
"""Return the length of self.tensor first dimension.""" | |
return self.tensor.size(0) | |
def __deepcopy__(self, memo): | |
"""Only clone the ``self.tensor`` when applying deepcopy.""" | |
cls = self.__class__ | |
other = cls.__new__(cls) | |
memo[id(self)] = other | |
other.tensor = self.tensor.clone() | |
return other | |
def __repr__(self) -> str: | |
"""Return a strings that describes the object.""" | |
return self.__class__.__name__ + '(\n' + str(self.tensor) + ')' | |
def new_tensor(self, *args, **kwargs) -> Tensor: | |
"""Reload ``new_tensor`` from self.tensor.""" | |
return self.tensor.new_tensor(*args, **kwargs) | |
def new_full(self, *args, **kwargs) -> Tensor: | |
"""Reload ``new_full`` from self.tensor.""" | |
return self.tensor.new_full(*args, **kwargs) | |
def new_empty(self, *args, **kwargs) -> Tensor: | |
"""Reload ``new_empty`` from self.tensor.""" | |
return self.tensor.new_empty(*args, **kwargs) | |
def new_ones(self, *args, **kwargs) -> Tensor: | |
"""Reload ``new_ones`` from self.tensor.""" | |
return self.tensor.new_ones(*args, **kwargs) | |
def new_zeros(self, *args, **kwargs) -> Tensor: | |
"""Reload ``new_zeros`` from self.tensor.""" | |
return self.tensor.new_zeros(*args, **kwargs) | |
def size(self, dim: Optional[int] = None) -> Union[int, torch.Size]: | |
"""Reload new_zeros from self.tensor.""" | |
# self.tensor.size(dim) cannot work when dim=None. | |
return self.tensor.size() if dim is None else self.tensor.size(dim) | |
def dim(self) -> int: | |
"""Reload ``dim`` from self.tensor.""" | |
return self.tensor.dim() | |
def device(self) -> torch.device: | |
"""Reload ``device`` from self.tensor.""" | |
return self.tensor.device | |
def dtype(self) -> torch.dtype: | |
"""Reload ``dtype`` from self.tensor.""" | |
return self.tensor.dtype | |
def shape(self) -> torch.Size: | |
return self.tensor.shape | |
def numel(self) -> int: | |
"""Reload ``numel`` from self.tensor.""" | |
return self.tensor.numel() | |
def numpy(self) -> np.ndarray: | |
"""Reload ``numpy`` from self.tensor.""" | |
return self.tensor.numpy() | |
def to(self: T, *args, **kwargs) -> T: | |
"""Reload ``to`` from self.tensor.""" | |
return type(self)(self.tensor.to(*args, **kwargs), clone=False) | |
def cpu(self: T) -> T: | |
"""Reload ``cpu`` from self.tensor.""" | |
return type(self)(self.tensor.cpu(), clone=False) | |
def cuda(self: T, *args, **kwargs) -> T: | |
"""Reload ``cuda`` from self.tensor.""" | |
return type(self)(self.tensor.cuda(*args, **kwargs), clone=False) | |
def clone(self: T) -> T: | |
"""Reload ``clone`` from self.tensor.""" | |
return type(self)(self.tensor) | |
def detach(self: T) -> T: | |
"""Reload ``detach`` from self.tensor.""" | |
return type(self)(self.tensor.detach(), clone=False) | |
def view(self: T, *shape: Tuple[int]) -> T: | |
"""Reload ``view`` from self.tensor.""" | |
return type(self)(self.tensor.view(shape), clone=False) | |
def reshape(self: T, *shape: Tuple[int]) -> T: | |
"""Reload ``reshape`` from self.tensor.""" | |
return type(self)(self.tensor.reshape(shape), clone=False) | |
def expand(self: T, *sizes: Tuple[int]) -> T: | |
"""Reload ``expand`` from self.tensor.""" | |
return type(self)(self.tensor.expand(sizes), clone=False) | |
def repeat(self: T, *sizes: Tuple[int]) -> T: | |
"""Reload ``repeat`` from self.tensor.""" | |
return type(self)(self.tensor.repeat(sizes), clone=False) | |
def transpose(self: T, dim0: int, dim1: int) -> T: | |
"""Reload ``transpose`` from self.tensor.""" | |
ndim = self.tensor.dim() | |
assert dim0 != -1 and dim0 != ndim - 1 | |
assert dim1 != -1 and dim1 != ndim - 1 | |
return type(self)(self.tensor.transpose(dim0, dim1), clone=False) | |
def permute(self: T, *dims: Tuple[int]) -> T: | |
"""Reload ``permute`` from self.tensor.""" | |
assert dims[-1] == -1 or dims[-1] == self.tensor.dim() - 1 | |
return type(self)(self.tensor.permute(dims), clone=False) | |
def split(self: T, | |
split_size_or_sections: Union[int, Sequence[int]], | |
dim: int = 0) -> List[T]: | |
"""Reload ``split`` from self.tensor.""" | |
assert dim != -1 and dim != self.tensor.dim() - 1 | |
boxes_list = self.tensor.split(split_size_or_sections, dim=dim) | |
return [type(self)(boxes, clone=False) for boxes in boxes_list] | |
def chunk(self: T, chunks: int, dim: int = 0) -> List[T]: | |
"""Reload ``chunk`` from self.tensor.""" | |
assert dim != -1 and dim != self.tensor.dim() - 1 | |
boxes_list = self.tensor.chunk(chunks, dim=dim) | |
return [type(self)(boxes, clone=False) for boxes in boxes_list] | |
def unbind(self: T, dim: int = 0) -> T: | |
"""Reload ``unbind`` from self.tensor.""" | |
assert dim != -1 and dim != self.tensor.dim() - 1 | |
boxes_list = self.tensor.unbind(dim=dim) | |
return [type(self)(boxes, clone=False) for boxes in boxes_list] | |
def flatten(self: T, start_dim: int = 0, end_dim: int = -2) -> T: | |
"""Reload ``flatten`` from self.tensor.""" | |
assert end_dim != -1 and end_dim != self.tensor.dim() - 1 | |
return type(self)(self.tensor.flatten(start_dim, end_dim), clone=False) | |
def squeeze(self: T, dim: Optional[int] = None) -> T: | |
"""Reload ``squeeze`` from self.tensor.""" | |
boxes = self.tensor.squeeze() if dim is None else \ | |
self.tensor.squeeze(dim) | |
return type(self)(boxes, clone=False) | |
def unsqueeze(self: T, dim: int) -> T: | |
"""Reload ``unsqueeze`` from self.tensor.""" | |
assert dim != -1 and dim != self.tensor.dim() | |
return type(self)(self.tensor.unsqueeze(dim), clone=False) | |
def cat(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T: | |
"""Cancatenates a box instance list into one single box instance. | |
Similar to ``torch.cat``. | |
Args: | |
box_list (Sequence[T]): A sequence of box instances. | |
dim (int): The dimension over which the box are concatenated. | |
Defaults to 0. | |
Returns: | |
T: Concatenated box instance. | |
""" | |
assert isinstance(box_list, Sequence) | |
if len(box_list) == 0: | |
raise ValueError('box_list should not be a empty list.') | |
assert dim != -1 and dim != box_list[0].dim() - 1 | |
assert all(isinstance(boxes, cls) for boxes in box_list) | |
th_box_list = [boxes.tensor for boxes in box_list] | |
return cls(torch.cat(th_box_list, dim=dim), clone=False) | |
def stack(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T: | |
"""Concatenates a sequence of tensors along a new dimension. Similar to | |
``torch.stack``. | |
Args: | |
box_list (Sequence[T]): A sequence of box instances. | |
dim (int): Dimension to insert. Defaults to 0. | |
Returns: | |
T: Concatenated box instance. | |
""" | |
assert isinstance(box_list, Sequence) | |
if len(box_list) == 0: | |
raise ValueError('box_list should not be a empty list.') | |
assert dim != -1 and dim != box_list[0].dim() | |
assert all(isinstance(boxes, cls) for boxes in box_list) | |
th_box_list = [boxes.tensor for boxes in box_list] | |
return cls(torch.stack(th_box_list, dim=dim), clone=False) | |
def centers(self) -> Tensor: | |
"""Return a tensor representing the centers of boxes.""" | |
pass | |
def areas(self) -> Tensor: | |
"""Return a tensor representing the areas of boxes.""" | |
pass | |
def widths(self) -> Tensor: | |
"""Return a tensor representing the widths of boxes.""" | |
pass | |
def heights(self) -> Tensor: | |
"""Return a tensor representing the heights of boxes.""" | |
pass | |
def flip_(self, | |
img_shape: Tuple[int, int], | |
direction: str = 'horizontal') -> None: | |
"""Flip boxes horizontally or vertically in-place. | |
Args: | |
img_shape (Tuple[int, int]): A tuple of image height and width. | |
direction (str): Flip direction, options are "horizontal", | |
"vertical" and "diagonal". Defaults to "horizontal" | |
""" | |
pass | |
def translate_(self, distances: Tuple[float, float]) -> None: | |
"""Translate boxes in-place. | |
Args: | |
distances (Tuple[float, float]): translate distances. The first | |
is horizontal distance and the second is vertical distance. | |
""" | |
pass | |
def clip_(self, img_shape: Tuple[int, int]) -> None: | |
"""Clip boxes according to the image shape in-place. | |
Args: | |
img_shape (Tuple[int, int]): A tuple of image height and width. | |
""" | |
pass | |
def rotate_(self, center: Tuple[float, float], angle: float) -> None: | |
"""Rotate all boxes in-place. | |
Args: | |
center (Tuple[float, float]): Rotation origin. | |
angle (float): Rotation angle represented in degrees. Positive | |
values mean clockwise rotation. | |
""" | |
pass | |
def project_(self, homography_matrix: Union[Tensor, np.ndarray]) -> None: | |
"""Geometric transformat boxes in-place. | |
Args: | |
homography_matrix (Tensor or np.ndarray]): | |
Shape (3, 3) for geometric transformation. | |
""" | |
pass | |
def rescale_(self, scale_factor: Tuple[float, float]) -> None: | |
"""Rescale boxes w.r.t. rescale_factor in-place. | |
Note: | |
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes | |
w.r.t ``scale_facotr``. The difference is that ``resize_`` only | |
changes the width and the height of boxes, but ``rescale_`` also | |
rescales the box centers simultaneously. | |
Args: | |
scale_factor (Tuple[float, float]): factors for scaling boxes. | |
The length should be 2. | |
""" | |
pass | |
def resize_(self, scale_factor: Tuple[float, float]) -> None: | |
"""Resize the box width and height w.r.t scale_factor in-place. | |
Note: | |
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes | |
w.r.t ``scale_facotr``. The difference is that ``resize_`` only | |
changes the width and the height of boxes, but ``rescale_`` also | |
rescales the box centers simultaneously. | |
Args: | |
scale_factor (Tuple[float, float]): factors for scaling box | |
shapes. The length should be 2. | |
""" | |
pass | |
def is_inside(self, | |
img_shape: Tuple[int, int], | |
all_inside: bool = False, | |
allowed_border: int = 0) -> BoolTensor: | |
"""Find boxes inside the image. | |
Args: | |
img_shape (Tuple[int, int]): A tuple of image height and width. | |
all_inside (bool): Whether the boxes are all inside the image or | |
part inside the image. Defaults to False. | |
allowed_border (int): Boxes that extend beyond the image shape | |
boundary by more than ``allowed_border`` are considered | |
"outside" Defaults to 0. | |
Returns: | |
BoolTensor: A BoolTensor indicating whether the box is inside | |
the image. Assuming the original boxes have shape (m, n, box_dim), | |
the output has shape (m, n). | |
""" | |
pass | |
def find_inside_points(self, | |
points: Tensor, | |
is_aligned: bool = False) -> BoolTensor: | |
"""Find inside box points. Boxes dimension must be 2. | |
Args: | |
points (Tensor): Points coordinates. Has shape of (m, 2). | |
is_aligned (bool): Whether ``points`` has been aligned with boxes | |
or not. If True, the length of boxes and ``points`` should be | |
the same. Defaults to False. | |
Returns: | |
BoolTensor: A BoolTensor indicating whether a point is inside | |
boxes. Assuming the boxes has shape of (n, box_dim), if | |
``is_aligned`` is False. The index has shape of (m, n). If | |
``is_aligned`` is True, m should be equal to n and the index has | |
shape of (m, ). | |
""" | |
pass | |
def overlaps(boxes1: 'BaseBoxes', | |
boxes2: 'BaseBoxes', | |
mode: str = 'iou', | |
is_aligned: bool = False, | |
eps: float = 1e-6) -> Tensor: | |
"""Calculate overlap between two set of boxes with their types | |
converted to the present box type. | |
Args: | |
boxes1 (:obj:`BaseBoxes`): BaseBoxes with shape of (m, box_dim) | |
or empty. | |
boxes2 (:obj:`BaseBoxes`): BaseBoxes with shape of (n, box_dim) | |
or empty. | |
mode (str): "iou" (intersection over union), "iof" (intersection | |
over foreground). Defaults to "iou". | |
is_aligned (bool): If True, then m and n must be equal. Defaults | |
to False. | |
eps (float): A value added to the denominator for numerical | |
stability. Defaults to 1e-6. | |
Returns: | |
Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) | |
""" | |
pass | |
def from_instance_masks(masks: MaskType) -> 'BaseBoxes': | |
"""Create boxes from instance masks. | |
Args: | |
masks (:obj:`BitmapMasks` or :obj:`PolygonMasks`): BitmapMasks or | |
PolygonMasks instance with length of n. | |
Returns: | |
:obj:`BaseBoxes`: Converted boxes with shape of (n, box_dim). | |
""" | |
pass | |