Spaces:
Runtime error
Runtime error
Migrate to gradio 4.x
Browse files- app.py +258 -337
- requirements.txt +1 -1
- style.css +1 -1
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
@@ -17,26 +18,20 @@ from lang_list import (
|
|
17 |
TEXT_SOURCE_LANGUAGE_NAMES,
|
18 |
)
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
DESCRIPTION = """
|
|
|
23 |
|
24 |
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
25 |
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
26 |
-
|
27 |
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
28 |
translation and more, without relying on multiple separate models.
|
29 |
"""
|
30 |
|
31 |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
|
32 |
|
33 |
-
TASK_NAMES = [
|
34 |
-
"S2ST (Speech to Speech translation)",
|
35 |
-
"S2TT (Speech to Text translation)",
|
36 |
-
"T2ST (Text to Speech translation)",
|
37 |
-
"T2TT (Text to Text translation)",
|
38 |
-
"ASR (Automatic Speech Recognition)",
|
39 |
-
]
|
40 |
AUDIO_SAMPLE_RATE = 16000.0
|
41 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
42 |
DEFAULT_TARGET_LANGUAGE = "French"
|
@@ -55,388 +50,314 @@ translator = Translator(
|
|
55 |
)
|
56 |
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
67 |
-
task_name = task_name.split()[0]
|
68 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
69 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
input_data = input_audio_file
|
76 |
-
|
77 |
-
arr, org_sr = torchaudio.load(input_data)
|
78 |
-
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
79 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
80 |
-
if new_arr.shape[1] > max_length:
|
81 |
-
new_arr = new_arr[:, :max_length]
|
82 |
-
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
83 |
-
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
84 |
-
else:
|
85 |
-
input_data = input_text
|
86 |
out_texts, out_audios = translator.predict(
|
87 |
-
input=
|
88 |
-
task_str=
|
89 |
tgt_lang=target_language_code,
|
90 |
-
src_lang=source_language_code,
|
91 |
)
|
92 |
out_text = str(out_texts[0])
|
93 |
-
|
94 |
-
|
95 |
-
out_wav = out_audios.audio_wavs[0]
|
96 |
-
return (int(AUDIO_SAMPLE_RATE), out_wav.cpu().detach().numpy()), out_text
|
97 |
-
else:
|
98 |
-
return None, out_text
|
99 |
-
|
100 |
-
|
101 |
-
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
102 |
-
return predict(
|
103 |
-
task_name="S2ST",
|
104 |
-
audio_source="file",
|
105 |
-
input_audio_mic=None,
|
106 |
-
input_audio_file=input_audio_file,
|
107 |
-
input_text=None,
|
108 |
-
source_language=None,
|
109 |
-
target_language=target_language,
|
110 |
-
)
|
111 |
|
112 |
|
113 |
-
def
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
source_language=None,
|
121 |
-
target_language=target_language,
|
122 |
-
)
|
123 |
-
|
124 |
-
|
125 |
-
def process_t2st_example(
|
126 |
-
input_text: str, source_language: str, target_language: str
|
127 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
128 |
-
return predict(
|
129 |
-
task_name="T2ST",
|
130 |
-
audio_source="",
|
131 |
-
input_audio_mic=None,
|
132 |
-
input_audio_file=None,
|
133 |
-
input_text=input_text,
|
134 |
-
source_language=source_language,
|
135 |
-
target_language=target_language,
|
136 |
)
|
|
|
137 |
|
138 |
|
139 |
-
def
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
input_text=input_text,
|
148 |
-
source_language=source_language,
|
149 |
-
target_language=target_language,
|
150 |
)
|
|
|
|
|
|
|
151 |
|
152 |
|
153 |
-
def
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
target_language=target_language,
|
162 |
)
|
|
|
163 |
|
164 |
|
165 |
-
def
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
170 |
)
|
|
|
171 |
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
gr.update(visible=False), # source_language
|
180 |
-
gr.update(
|
181 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
182 |
-
), # target_language
|
183 |
-
)
|
184 |
-
elif task_name == "S2TT":
|
185 |
-
return (
|
186 |
-
gr.update(visible=True), # audio_box
|
187 |
-
gr.update(visible=False), # input_text
|
188 |
-
gr.update(visible=False), # source_language
|
189 |
-
gr.update(
|
190 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
191 |
-
), # target_language
|
192 |
-
)
|
193 |
-
elif task_name == "T2ST":
|
194 |
-
return (
|
195 |
-
gr.update(visible=False), # audio_box
|
196 |
-
gr.update(visible=True), # input_text
|
197 |
-
gr.update(visible=True), # source_language
|
198 |
-
gr.update(
|
199 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
200 |
-
), # target_language
|
201 |
-
)
|
202 |
-
elif task_name == "T2TT":
|
203 |
-
return (
|
204 |
-
gr.update(visible=False), # audio_box
|
205 |
-
gr.update(visible=True), # input_text
|
206 |
-
gr.update(visible=True), # source_language
|
207 |
-
gr.update(
|
208 |
-
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
209 |
-
), # target_language
|
210 |
)
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
), # target_language
|
219 |
)
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
)
|
231 |
-
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
232 |
-
return (
|
233 |
-
gr.update(visible=False, value=None), # output_audio
|
234 |
-
gr.update(value=None), # output_text
|
235 |
)
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
248 |
)
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
elem_id="duplicate-button",
|
256 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
257 |
)
|
|
|
|
|
258 |
with gr.Group():
|
259 |
-
task_name = gr.Dropdown(
|
260 |
-
label="Task",
|
261 |
-
choices=TASK_NAMES,
|
262 |
-
value=TASK_NAMES[0],
|
263 |
-
)
|
264 |
with gr.Row():
|
265 |
source_language = gr.Dropdown(
|
266 |
label="Source language",
|
267 |
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
268 |
value="English",
|
269 |
-
visible=False,
|
270 |
)
|
271 |
target_language = gr.Dropdown(
|
272 |
label="Target language",
|
273 |
-
choices=
|
274 |
value=DEFAULT_TARGET_LANGUAGE,
|
275 |
)
|
276 |
-
|
277 |
-
audio_source = gr.Radio(
|
278 |
-
label="Audio source",
|
279 |
-
choices=["file", "microphone"],
|
280 |
-
value="file",
|
281 |
-
)
|
282 |
-
input_audio_mic = gr.Audio(
|
283 |
-
label="Input speech",
|
284 |
-
type="filepath",
|
285 |
-
source="microphone",
|
286 |
-
visible=False,
|
287 |
-
)
|
288 |
-
input_audio_file = gr.Audio(
|
289 |
-
label="Input speech",
|
290 |
-
type="filepath",
|
291 |
-
source="upload",
|
292 |
-
visible=True,
|
293 |
-
)
|
294 |
-
input_text = gr.Textbox(label="Input text", visible=False)
|
295 |
btn = gr.Button("Translate")
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
type="numpy",
|
302 |
-
)
|
303 |
-
output_text = gr.Textbox(label="Translated text")
|
304 |
-
|
305 |
-
with gr.Row(visible=True) as s2st_example_row:
|
306 |
-
s2st_examples = gr.Examples(
|
307 |
-
examples=[
|
308 |
-
["assets/sample_input.mp3", "French"],
|
309 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
310 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
311 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
312 |
-
],
|
313 |
-
inputs=[input_audio_file, target_language],
|
314 |
-
outputs=[output_audio, output_text],
|
315 |
-
fn=process_s2st_example,
|
316 |
-
cache_examples=CACHE_EXAMPLES,
|
317 |
)
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
325 |
],
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
)
|
331 |
-
with gr.Row(visible=False) as t2st_example_row:
|
332 |
-
t2st_examples = gr.Examples(
|
333 |
-
examples=[
|
334 |
-
["My favorite animal is the elephant.", "English", "French"],
|
335 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
336 |
-
[
|
337 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
338 |
-
"English",
|
339 |
-
"Hindi",
|
340 |
-
],
|
341 |
-
[
|
342 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
343 |
-
"English",
|
344 |
-
"Spanish",
|
345 |
-
],
|
346 |
],
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
)
|
352 |
-
with gr.Row(visible=False) as t2tt_example_row:
|
353 |
-
t2tt_examples = gr.Examples(
|
354 |
-
examples=[
|
355 |
-
["My favorite animal is the elephant.", "English", "French"],
|
356 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
357 |
-
[
|
358 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
359 |
-
"English",
|
360 |
-
"Hindi",
|
361 |
-
],
|
362 |
-
[
|
363 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
364 |
-
"English",
|
365 |
-
"Spanish",
|
366 |
-
],
|
367 |
],
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
)
|
373 |
-
with gr.Row(visible=False) as asr_example_row:
|
374 |
-
asr_examples = gr.Examples(
|
375 |
-
examples=[
|
376 |
-
["assets/sample_input.mp3", "English"],
|
377 |
-
["assets/sample_input_2.mp3", "English"],
|
378 |
],
|
379 |
-
inputs=[input_audio_file, target_language],
|
380 |
-
outputs=[output_audio, output_text],
|
381 |
-
fn=process_asr_example,
|
382 |
-
cache_examples=CACHE_EXAMPLES,
|
383 |
-
)
|
384 |
-
|
385 |
-
audio_source.change(
|
386 |
-
fn=update_audio_ui,
|
387 |
-
inputs=audio_source,
|
388 |
-
outputs=[
|
389 |
-
input_audio_mic,
|
390 |
-
input_audio_file,
|
391 |
],
|
392 |
-
|
|
|
|
|
|
|
393 |
api_name=False,
|
394 |
)
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
input_text,
|
401 |
-
source_language,
|
402 |
-
target_language,
|
403 |
-
],
|
404 |
-
queue=False,
|
405 |
-
api_name=False,
|
406 |
-
).then(
|
407 |
-
fn=update_output_ui,
|
408 |
-
inputs=task_name,
|
409 |
outputs=[output_audio, output_text],
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
api_name=False,
|
412 |
-
)
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
],
|
422 |
-
|
|
|
|
|
|
|
423 |
api_name=False,
|
424 |
)
|
425 |
|
426 |
btn.click(
|
427 |
-
fn=
|
428 |
-
inputs=[
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
|
|
439 |
)
|
440 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
if __name__ == "__main__":
|
442 |
demo.queue(max_size=50).launch()
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
4 |
+
import pathlib
|
5 |
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
|
|
18 |
TEXT_SOURCE_LANGUAGE_NAMES,
|
19 |
)
|
20 |
|
21 |
+
if not pathlib.Path("models").exists():
|
22 |
+
snapshot_download(repo_id="meta-private/M4Tv2", repo_type="model", local_dir="models")
|
23 |
|
24 |
+
DESCRIPTION = """\
|
25 |
+
# SeamlessM4T
|
26 |
|
27 |
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
28 |
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
|
|
29 |
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
30 |
translation and more, without relying on multiple separate models.
|
31 |
"""
|
32 |
|
33 |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
AUDIO_SAMPLE_RATE = 16000.0
|
36 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
37 |
DEFAULT_TARGET_LANGUAGE = "French"
|
|
|
50 |
)
|
51 |
|
52 |
|
53 |
+
def preprocess_audio(input_audio: str) -> None:
|
54 |
+
arr, org_sr = torchaudio.load(input_audio)
|
55 |
+
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
56 |
+
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
57 |
+
if new_arr.shape[1] > max_length:
|
58 |
+
new_arr = new_arr[:, :max_length]
|
59 |
+
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
60 |
+
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
|
63 |
+
def run_s2st(input_audio: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
64 |
+
preprocess_audio(input_audio)
|
65 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
out_texts, out_audios = translator.predict(
|
67 |
+
input=input_audio,
|
68 |
+
task_str="S2ST",
|
69 |
tgt_lang=target_language_code,
|
|
|
70 |
)
|
71 |
out_text = str(out_texts[0])
|
72 |
+
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
|
73 |
+
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
+
def run_s2tt(input_audio: str, target_language: str) -> str:
|
77 |
+
preprocess_audio(input_audio)
|
78 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
79 |
+
out_texts, _ = translator.predict(
|
80 |
+
input=input_audio,
|
81 |
+
task_str="S2TT",
|
82 |
+
tgt_lang=target_language_code,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
+
return str(out_texts[0])
|
85 |
|
86 |
|
87 |
+
def run_t2st(input_text: str, source_language: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
88 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
89 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
90 |
+
out_texts, out_audios = translator.predict(
|
91 |
+
input=input_text,
|
92 |
+
task_str="T2ST",
|
93 |
+
tgt_lang=target_language_code,
|
94 |
+
src_lang=source_language_code,
|
|
|
|
|
|
|
95 |
)
|
96 |
+
out_text = str(out_texts[0])
|
97 |
+
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
|
98 |
+
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
|
99 |
|
100 |
|
101 |
+
def run_t2tt(input_text: str, source_language: str, target_language: str) -> str:
|
102 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
103 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
104 |
+
out_texts, _ = translator.predict(
|
105 |
+
input=input_text,
|
106 |
+
task_str="T2TT",
|
107 |
+
tgt_lang=target_language_code,
|
108 |
+
src_lang=source_language_code,
|
|
|
109 |
)
|
110 |
+
return str(out_texts[0])
|
111 |
|
112 |
|
113 |
+
def run_asr(input_audio: str, target_language: str) -> str:
|
114 |
+
preprocess_audio(input_audio)
|
115 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
116 |
+
out_texts, _ = translator.predict(
|
117 |
+
input=input_audio,
|
118 |
+
task_str="ASR",
|
119 |
+
tgt_lang=target_language_code,
|
120 |
)
|
121 |
+
return str(out_texts[0])
|
122 |
|
123 |
|
124 |
+
with gr.Blocks() as demo_s2st:
|
125 |
+
with gr.Group():
|
126 |
+
target_language = gr.Dropdown(
|
127 |
+
label="Target language",
|
128 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
129 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
)
|
131 |
+
input_audio = gr.Audio(label="Input speech", type="filepath")
|
132 |
+
btn = gr.Button("Translate")
|
133 |
+
output_audio = gr.Audio(
|
134 |
+
label="Translated speech",
|
135 |
+
autoplay=False,
|
136 |
+
streaming=False,
|
137 |
+
type="numpy",
|
|
|
138 |
)
|
139 |
+
output_text = gr.Textbox(label="Translated text")
|
140 |
+
|
141 |
+
gr.Examples(
|
142 |
+
examples=[
|
143 |
+
["assets/sample_input.mp3", "French"],
|
144 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
145 |
+
["assets/sample_input_2.mp3", "Hindi"],
|
146 |
+
["assets/sample_input_2.mp3", "Spanish"],
|
147 |
+
],
|
148 |
+
inputs=[input_audio, target_language],
|
149 |
+
outputs=[output_audio, output_text],
|
150 |
+
fn=run_s2st,
|
151 |
+
cache_examples=CACHE_EXAMPLES,
|
152 |
+
api_name=False,
|
153 |
+
)
|
154 |
|
155 |
+
btn.click(
|
156 |
+
fn=run_s2st,
|
157 |
+
inputs=[input_audio, target_language],
|
158 |
+
outputs=[output_audio, output_text],
|
159 |
+
api_name="s2st",
|
160 |
+
)
|
161 |
|
162 |
+
with gr.Blocks() as demo_s2tt:
|
163 |
+
with gr.Group():
|
164 |
+
target_language = gr.Dropdown(
|
165 |
+
label="Target language",
|
166 |
+
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
167 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
|
|
|
|
|
|
|
|
|
|
168 |
)
|
169 |
+
input_audio = gr.Audio(label="Input speech", type="filepath")
|
170 |
+
btn = gr.Button("Translate")
|
171 |
+
output_text = gr.Textbox(label="Translated text")
|
172 |
+
|
173 |
+
gr.Examples(
|
174 |
+
examples=[
|
175 |
+
["assets/sample_input.mp3", "French"],
|
176 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
177 |
+
["assets/sample_input_2.mp3", "Hindi"],
|
178 |
+
["assets/sample_input_2.mp3", "Spanish"],
|
179 |
+
],
|
180 |
+
inputs=[input_audio, target_language],
|
181 |
+
outputs=output_text,
|
182 |
+
fn=run_s2tt,
|
183 |
+
cache_examples=CACHE_EXAMPLES,
|
184 |
+
api_name=False,
|
185 |
)
|
186 |
|
187 |
+
btn.click(
|
188 |
+
fn=run_s2tt,
|
189 |
+
inputs=[input_audio, target_language],
|
190 |
+
outputs=output_text,
|
191 |
+
api_name="s2tt",
|
|
|
|
|
192 |
)
|
193 |
+
|
194 |
+
with gr.Blocks() as demo_t2st:
|
195 |
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
196 |
with gr.Row():
|
197 |
source_language = gr.Dropdown(
|
198 |
label="Source language",
|
199 |
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
200 |
value="English",
|
|
|
201 |
)
|
202 |
target_language = gr.Dropdown(
|
203 |
label="Target language",
|
204 |
+
choices=T2TT_TARGET_LANGUAGE_NAMES,
|
205 |
value=DEFAULT_TARGET_LANGUAGE,
|
206 |
)
|
207 |
+
input_text = gr.Textbox(label="Input text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
btn = gr.Button("Translate")
|
209 |
+
output_audio = gr.Audio(
|
210 |
+
label="Translated speech",
|
211 |
+
autoplay=False,
|
212 |
+
streaming=False,
|
213 |
+
type="numpy",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
+
output_text = gr.Textbox(label="Translated text")
|
216 |
+
|
217 |
+
gr.Examples(
|
218 |
+
examples=[
|
219 |
+
[
|
220 |
+
"My favorite animal is the elephant.",
|
221 |
+
"English",
|
222 |
+
"French",
|
223 |
],
|
224 |
+
[
|
225 |
+
"My favorite animal is the elephant.",
|
226 |
+
"English",
|
227 |
+
"Mandarin Chinese",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
],
|
229 |
+
[
|
230 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
231 |
+
"English",
|
232 |
+
"Hindi",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
],
|
234 |
+
[
|
235 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
236 |
+
"English",
|
237 |
+
"Spanish",
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
],
|
240 |
+
inputs=[input_text, source_language, target_language],
|
241 |
+
outputs=[output_audio, output_text],
|
242 |
+
fn=run_t2st,
|
243 |
+
cache_examples=CACHE_EXAMPLES,
|
244 |
api_name=False,
|
245 |
)
|
246 |
+
|
247 |
+
gr.on(
|
248 |
+
triggers=[input_text.submit, btn.click],
|
249 |
+
fn=run_t2st,
|
250 |
+
inputs=[input_text, source_language, target_language],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
outputs=[output_audio, output_text],
|
252 |
+
api_name="t2st",
|
253 |
+
)
|
254 |
+
|
255 |
+
with gr.Blocks() as demo_t2tt:
|
256 |
+
with gr.Group():
|
257 |
+
with gr.Row():
|
258 |
+
source_language = gr.Dropdown(
|
259 |
+
label="Source language",
|
260 |
+
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
261 |
+
value="English",
|
262 |
+
)
|
263 |
+
target_language = gr.Dropdown(
|
264 |
+
label="Target language",
|
265 |
+
choices=T2TT_TARGET_LANGUAGE_NAMES,
|
266 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
267 |
+
)
|
268 |
+
input_text = gr.Textbox(label="Input text")
|
269 |
+
btn = gr.Button("Translate")
|
270 |
+
output_text = gr.Textbox(label="Translated text")
|
271 |
+
|
272 |
+
gr.Examples(
|
273 |
+
examples=[
|
274 |
+
[
|
275 |
+
"My favorite animal is the elephant.",
|
276 |
+
"English",
|
277 |
+
"French",
|
278 |
+
],
|
279 |
+
[
|
280 |
+
"My favorite animal is the elephant.",
|
281 |
+
"English",
|
282 |
+
"Mandarin Chinese",
|
283 |
+
],
|
284 |
+
[
|
285 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
286 |
+
"English",
|
287 |
+
"Hindi",
|
288 |
+
],
|
289 |
+
[
|
290 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
291 |
+
"English",
|
292 |
+
"Spanish",
|
293 |
+
],
|
294 |
+
],
|
295 |
+
inputs=[input_text, source_language, target_language],
|
296 |
+
outputs=output_text,
|
297 |
+
fn=run_t2tt,
|
298 |
+
cache_examples=CACHE_EXAMPLES,
|
299 |
api_name=False,
|
300 |
+
)
|
301 |
+
|
302 |
+
gr.on(
|
303 |
+
triggers=[input_text.submit, btn.click],
|
304 |
+
fn=run_t2tt,
|
305 |
+
inputs=[input_text, source_language, target_language],
|
306 |
+
outputs=output_text,
|
307 |
+
api_name="t2tt",
|
308 |
+
)
|
309 |
+
|
310 |
+
with gr.Blocks() as demo_asr:
|
311 |
+
with gr.Group():
|
312 |
+
target_language = gr.Dropdown(
|
313 |
+
label="Target language",
|
314 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
315 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
316 |
+
)
|
317 |
+
input_audio = gr.Audio(label="Input speech", type="filepath")
|
318 |
+
btn = gr.Button("Translate")
|
319 |
+
output_text = gr.Textbox(label="Translated text")
|
320 |
+
|
321 |
+
gr.Examples(
|
322 |
+
examples=[
|
323 |
+
["assets/sample_input.mp3", "English"],
|
324 |
+
["assets/sample_input_2.mp3", "English"],
|
325 |
],
|
326 |
+
inputs=[input_audio, target_language],
|
327 |
+
outputs=output_text,
|
328 |
+
fn=run_asr,
|
329 |
+
cache_examples=CACHE_EXAMPLES,
|
330 |
api_name=False,
|
331 |
)
|
332 |
|
333 |
btn.click(
|
334 |
+
fn=run_asr,
|
335 |
+
inputs=[input_audio, target_language],
|
336 |
+
outputs=output_text,
|
337 |
+
api_name="asr",
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
with gr.Blocks(css="style.css") as demo:
|
342 |
+
gr.Markdown(DESCRIPTION)
|
343 |
+
gr.DuplicateButton(
|
344 |
+
value="Duplicate Space for private use",
|
345 |
+
elem_id="duplicate-button",
|
346 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
347 |
)
|
348 |
|
349 |
+
with gr.Tabs():
|
350 |
+
with gr.Tab(label="S2ST"):
|
351 |
+
demo_s2st.render()
|
352 |
+
with gr.Tab(label="S2TT"):
|
353 |
+
demo_s2tt.render()
|
354 |
+
with gr.Tab(label="T2ST"):
|
355 |
+
demo_t2st.render()
|
356 |
+
with gr.Tab(label="T2TT"):
|
357 |
+
demo_t2tt.render()
|
358 |
+
with gr.Tab(label="ASR"):
|
359 |
+
demo_asr.render()
|
360 |
+
|
361 |
+
|
362 |
if __name__ == "__main__":
|
363 |
demo.queue(max_size=50).launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio==3.
|
2 |
omegaconf==2.3.0
|
3 |
torch==2.1.0
|
4 |
torchaudio==2.1.0
|
|
|
1 |
+
gradio==4.3.0
|
2 |
omegaconf==2.3.0
|
3 |
torch==2.1.0
|
4 |
torchaudio==2.1.0
|
style.css
CHANGED
@@ -9,7 +9,7 @@ h1 {
|
|
9 |
border-radius: 100vh;
|
10 |
}
|
11 |
|
12 |
-
|
13 |
max-width: 730px;
|
14 |
margin: auto;
|
15 |
padding-top: 1.5rem;
|
|
|
9 |
border-radius: 100vh;
|
10 |
}
|
11 |
|
12 |
+
.contain {
|
13 |
max-width: 730px;
|
14 |
margin: auto;
|
15 |
padding-top: 1.5rem;
|