File size: 9,733 Bytes
2d522b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from simuleval.utils.agent import build_system_from_dir
from typing import Any, Tuple
import numpy as np
import soundfile
from fairseq.data.audio.audio_utils import convert_waveform
import io
import asyncio
from simuleval.data.segments import SpeechSegment, EmptySegment
import threading
import math
import logging
import sys
from pathlib import Path
import time
from g2p_en import G2p
import torch
import traceback
import time
import random

from .speech_and_text_output import SpeechAndTextOutput

MODEL_SAMPLE_RATE = 16_000

logger = logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stdout))


class SimulevalTranscoder:
    def __init__(self, agent, sample_rate, debug, buffer_limit):
        self.agent = agent
        self.input_queue = asyncio.Queue()
        self.output_queue = asyncio.Queue()
        self.states = self.agent.build_states()
        if debug:
            self.states[0].debug = True
        self.incoming_sample_rate = sample_rate
        self.close = False
        self.g2p = G2p()

        # buffer all outgoing translations within this amount of time
        self.output_buffer_idle_ms = 5000
        self.output_buffer_size_limit = (
            buffer_limit  # phonemes for text, seconds for speech
        )
        self.output_buffer_cur_size = 0
        self.output_buffer = []
        self.speech_output_sample_rate = None

        self.last_output_ts = time.time() * 1000
        self.timeout_ms = (
            30000  # close the transcoder thread after this amount of silence
        )
        self.first_input_ts = None
        self.first_output_ts = None
        self.output_data_type = None  # speech or text
        self.debug = debug
        self.debug_ts = f"{time.time()}_{random.randint(1000, 9999)}"
        if self.debug:
            debug_folder = Path(__file__).resolve().parent.parent / "debug"
            self.test_incoming_wav = soundfile.SoundFile(
                debug_folder / f"{self.debug_ts}_test_incoming.wav",
                mode="w+",
                format="WAV",
                subtype="PCM_16",
                samplerate=self.incoming_sample_rate,
                channels=1,
            )
            self.states[0].test_input_segments_wav = soundfile.SoundFile(
                debug_folder / f"{self.debug_ts}_test_input_segments.wav",
                mode="w+",
                format="WAV",
                samplerate=MODEL_SAMPLE_RATE,
                channels=1,
            )

    def debug_log(self, *args):
        if self.debug:
            logger.info(*args)

    @classmethod
    def build_agent(cls, model_path):
        logger.info(f"Building simuleval agent: {model_path}")
        agent = build_system_from_dir(
            Path(__file__).resolve().parent.parent / f"models/{model_path}",
            config_name="vad_main.yaml",
        )
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        agent.to(device, fp16=True)
        logger.info(
            f"Successfully built simuleval agent {model_path} on device {device}"
        )

        return agent

    def process_incoming_bytes(self, incoming_bytes):
        segment, _sr = self._preprocess_wav(incoming_bytes)
        # # segment is array([0, 0, 0, ..., 0, 0, 0], dtype=int16)
        self.input_queue.put_nowait(segment)

    def get_input_segment(self):
        if self.input_queue.empty():
            return None
        chunk = self.input_queue.get_nowait()
        self.input_queue.task_done()
        return chunk

    def _preprocess_wav(self, data: Any) -> Tuple[np.ndarray, int]:
        segment, sample_rate = soundfile.read(
            io.BytesIO(data),
            dtype="float32",
            always_2d=True,
            frames=-1,
            start=0,
            format="RAW",
            subtype="PCM_16",
            samplerate=self.incoming_sample_rate,
            channels=1,
        )
        if self.debug:
            self.test_incoming_wav.seek(0, soundfile.SEEK_END)
            self.test_incoming_wav.write(segment)

        segment = segment.T
        segment, new_sample_rate = convert_waveform(
            segment,
            sample_rate,
            normalize_volume=False,
            to_mono=True,
            to_sample_rate=MODEL_SAMPLE_RATE,
        )

        assert MODEL_SAMPLE_RATE == new_sample_rate
        segment = segment.squeeze(axis=0)
        return segment, new_sample_rate

    def process_pipeline_impl(self, input_segment):
        try:
            output_segment = self.agent.pushpop(input_segment, self.states)
            if (
                self.states[0].first_input_ts is not None
                and self.first_input_ts is None
            ):
                # TODO: this is hacky
                self.first_input_ts = self.states[0].first_input_ts

            if not output_segment.is_empty:
                self.output_queue.put_nowait(output_segment)

            if output_segment.finished:
                self.debug_log("OUTPUT SEGMENT IS FINISHED. Resetting states.")

                for state in self.states:
                    state.reset()

                if self.debug:
                    # when we rebuild states, this value is reset to whatever
                    # is in the system dir config, which defaults debug=False.
                    self.states[0].debug = True
        except Exception as e:
            logger.error(f"Got exception while processing pipeline: {e}")
            traceback.print_exc()
        return input_segment

    def process_pipeline_loop(self):
        if self.close:
            return  # closes the thread

        self.debug_log("processing_pipeline")
        while not self.close:
            input_segment = self.get_input_segment()
            if input_segment is None:
                if self.states[0].is_fresh_state:  # TODO: this is hacky
                    time.sleep(0.3)
                else:
                    time.sleep(0.03)
                continue
            self.process_pipeline_impl(input_segment)
        self.debug_log("finished processing_pipeline")

    def process_pipeline_once(self):
        if self.close:
            return

        self.debug_log("processing pipeline once")
        input_segment = self.get_input_segment()
        if input_segment is None:
            return
        self.process_pipeline_impl(input_segment)
        self.debug_log("finished processing_pipeline_once")

    def get_output_segment(self):
        if self.output_queue.empty():
            return None

        output_chunk = self.output_queue.get_nowait()
        self.output_queue.task_done()
        return output_chunk

    def start(self):
        self.debug_log("starting transcoder in a thread")
        threading.Thread(target=self.process_pipeline_loop).start()

    def first_translation_time(self):
        return round((self.first_output_ts - self.first_input_ts) / 1000, 2)

    def get_buffered_output(self) -> SpeechAndTextOutput:
        now = time.time() * 1000
        self.debug_log(f"get_buffered_output queue size: {self.output_queue.qsize()}")
        while not self.output_queue.empty():
            tmp_out = self.get_output_segment()
            if tmp_out and len(tmp_out.content) > 0:
                if not self.output_data_type:
                    self.output_data_type = tmp_out.data_type
                if len(self.output_buffer) == 0:
                    self.last_output_ts = now
                self._populate_output_buffer(tmp_out)
                self._increment_output_buffer_size(tmp_out)

                if tmp_out.finished:
                    res = self._gather_output_buffer_data(final=True)
                    self.output_buffer = []
                    self.increment_output_buffer_size = 0
                    self.last_output_ts = now
                    self.first_output_ts = now
                    return res

        if len(self.output_buffer) > 0 and (
            now - self.last_output_ts >= self.output_buffer_idle_ms
            or self.output_buffer_cur_size >= self.output_buffer_size_limit
        ):
            self.last_output_ts = now
            res = self._gather_output_buffer_data(final=False)
            self.output_buffer = []
            self.output_buffer_phoneme_count = 0
            self.first_output_ts = now
            return res
        else:
            return None

    def _gather_output_buffer_data(self, final):
        if self.output_data_type == "text":
            return SpeechAndTextOutput(text=" ".join(self.output_buffer), final=final)
        elif self.output_data_type == "speech":
            return SpeechAndTextOutput(
                speech_samples=self.output_buffer,
                speech_sample_rate=MODEL_SAMPLE_RATE,
                final=final,
            )
        else:
            raise ValueError(
                f"Invalid output buffer data type: {self.output_data_type}"
            )

    def _increment_output_buffer_size(self, segment):
        if segment.data_type == "text":
            self.output_buffer_cur_size += self._compute_phoneme_count(segment.content)
        elif segment.data_type == "speech":
            self.output_buffer_cur_size += (
                len(segment.content) / MODEL_SAMPLE_RATE
            )  # seconds

    def _populate_output_buffer(self, segment):
        if segment.data_type == "text":
            self.output_buffer.append(segment.content)
        elif segment.data_type == "speech":
            self.output_buffer += segment.content
        else:
            raise ValueError(f"Invalid segment data type: {segment.data_type}")

    def _compute_phoneme_count(self, string: str) -> int:
        return len([x for x in self.g2p(string) if x != " "])