sneha
commited on
Commit
·
cf37148
1
Parent(s):
9ee651f
first commit
Browse files- README.md +6 -6
- app.py +105 -0
- attn_helper.py +113 -0
- imgs/adroit1.jpg +0 -0
- imgs/cheetah.jpg +0 -0
- imgs/ego4d.jpg +0 -0
- imgs/ego4d_2.jpg +0 -0
- imgs/ego4d_3.jpg +0 -0
- imgs/kitchen.jpg +0 -0
- imgs/reacher.jpg +0 -0
- imgs/rearrange.jpg +0 -0
- imgs/trifinger1.jpg +0 -0
- imgs/walker.jpg +0 -0
- requirements.txt +10 -0
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: cc-by-4.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Visual Cortex Demo
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.23.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: cc-by-nc-4.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
import omegaconf
|
5 |
+
from hydra import utils
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from attn_helper import VITAttentionGradRollout, overlay_attn
|
10 |
+
import vc_models
|
11 |
+
#import eaif_models
|
12 |
+
import torchvision
|
13 |
+
|
14 |
+
|
15 |
+
HF_TOKEN = os.environ['HF_ACC_TOKEN']
|
16 |
+
eai_filepath = vc_models.__file__.split('src')[0]
|
17 |
+
MODEL_DIR=os.path.join(os.path.dirname(eai_filepath),'model_ckpts')
|
18 |
+
if not os.path.isdir(MODEL_DIR):
|
19 |
+
os.mkdir(MODEL_DIR)
|
20 |
+
|
21 |
+
FILENAME = "config.yaml"
|
22 |
+
BASE_MODEL_TUPLE = None
|
23 |
+
LARGE_MODEL_TUPLE = None
|
24 |
+
def get_model(model_name):
|
25 |
+
global BASE_MODEL_TUPLE,LARGE_MODEL_TUPLE
|
26 |
+
download_bin(model_name)
|
27 |
+
model = None
|
28 |
+
if BASE_MODEL_TUPLE is None and model_name == 'vc1-base':
|
29 |
+
repo_name = "facebook/" + model_name
|
30 |
+
model_cfg = omegaconf.OmegaConf.load(
|
31 |
+
hf_hub_download(repo_id=repo_name, filename=FILENAME,token=HF_TOKEN)
|
32 |
+
)
|
33 |
+
BASE_MODEL_TUPLE = utils.instantiate(model_cfg)
|
34 |
+
BASE_MODEL_TUPLE[0].eval()
|
35 |
+
model = BASE_MODEL_TUPLE
|
36 |
+
elif LARGE_MODEL_TUPLE is None and model_name == 'vc1-large':
|
37 |
+
repo_name = "facebook/" + model_name
|
38 |
+
model_cfg = omegaconf.OmegaConf.load(
|
39 |
+
hf_hub_download(repo_id=repo_name, filename=FILENAME,token=HF_TOKEN)
|
40 |
+
)
|
41 |
+
LARGE_MODEL_TUPLE = utils.instantiate(model_cfg)
|
42 |
+
LARGE_MODEL_TUPLE[0].eval()
|
43 |
+
model = LARGE_MODEL_TUPLE
|
44 |
+
elif model_name == 'vc1-base':
|
45 |
+
model = BASE_MODEL_TUPLE
|
46 |
+
elif model_name == 'vc1-large':
|
47 |
+
model = LARGE_MODEL_TUPLE
|
48 |
+
|
49 |
+
return model
|
50 |
+
|
51 |
+
def download_bin(model):
|
52 |
+
bin_file = ""
|
53 |
+
if model == "vc1-large":
|
54 |
+
bin_file = 'vc1_vitl.pth'
|
55 |
+
elif model == "vc1-base":
|
56 |
+
bin_file = 'vc1_vitb.pth'
|
57 |
+
else:
|
58 |
+
raise NameError("model not found: " + model)
|
59 |
+
|
60 |
+
bin_path = os.path.join(MODEL_DIR,bin_file)
|
61 |
+
if not os.path.isfile(bin_path):
|
62 |
+
model_bin = hf_hub_download(repo_id=REPO_ID, filename='pytorch_model.bin',local_dir=MODEL_DIR,local_dir_use_symlinks=True,token=HF_TOKEN)
|
63 |
+
os.rename(model_bin, bin_path)
|
64 |
+
|
65 |
+
|
66 |
+
def run_attn(input_img, model="vc1-large",fusion="min"):
|
67 |
+
download_bin(model)
|
68 |
+
model, embedding_dim, transform, metadata = get_model(model)
|
69 |
+
if input_img.shape[0] != 3:
|
70 |
+
input_img = input_img.transpose(2, 0, 1)
|
71 |
+
if(len(input_img.shape)== 3):
|
72 |
+
input_img = torch.tensor(input_img).unsqueeze(0)
|
73 |
+
input_img = input_img.float()
|
74 |
+
resize_transform = torchvision.transforms.Resize((250,250))
|
75 |
+
input_img = resize_transform(input_img)
|
76 |
+
x = transform(input_img)
|
77 |
+
|
78 |
+
attention_rollout = VITAttentionGradRollout(model,head_fusion=fusion)
|
79 |
+
|
80 |
+
y = model(x)
|
81 |
+
mask = attention_rollout.get_attn_mask()
|
82 |
+
attn_img = overlay_attn(input_img[0].permute(1,2,0),mask)
|
83 |
+
|
84 |
+
fig = plt.figure()
|
85 |
+
ax = fig.subplots()
|
86 |
+
print(y.shape)
|
87 |
+
im = ax.matshow(y.detach().numpy().reshape(16,-1))
|
88 |
+
plt.colorbar(im)
|
89 |
+
|
90 |
+
return attn_img, fig
|
91 |
+
|
92 |
+
model_type = gr.Dropdown(
|
93 |
+
["vc1-base", "vc1-large"], label="Model Size", value="vc1-large")
|
94 |
+
input_img = gr.Image(shape=(250,250))
|
95 |
+
input_button = gr.Radio(["min", "max", "mean"], value="min",label="Attention Head Fusion", info="How to combine the last layer attention across all 12 heads of the transformer.")
|
96 |
+
output_img = gr.Image(shape=(250,250))
|
97 |
+
output_plot = gr.Plot()
|
98 |
+
|
99 |
+
markdown ="This is a demo for the Visual Cortex models. When passed an image input, it displays the attention of the last layer of the transformer.\n \
|
100 |
+
The user can decide how the attention heads will be combined. \
|
101 |
+
Along with the attention heatmap, it also displays the embedding values reshaped to a 16x48 or 16x64 grid."
|
102 |
+
demo = gr.Interface(fn=run_attn, title="Visual Cortex Large Model", description=markdown,
|
103 |
+
examples=[[os.path.join('./imgs',x),None,None]for x in os.listdir(os.path.join(os.getcwd(),'imgs')) if 'jpg' in x],
|
104 |
+
inputs=[input_img,model_type,input_button],outputs=[output_img,output_plot])
|
105 |
+
demo.launch()
|
attn_helper.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import PIL
|
7 |
+
|
8 |
+
def overlay_attn(original_image,mask):
|
9 |
+
# Colormap and alpha for attention mask
|
10 |
+
# COLORMAP_OCEAN
|
11 |
+
# COLORMAP_OCEAN
|
12 |
+
colormap_attn, alpha_attn = cv2.COLORMAP_JET, 1 #0.85
|
13 |
+
|
14 |
+
# Resize mask to original image size
|
15 |
+
w, h = original_image.shape[0], original_image.shape[1]
|
16 |
+
mask = cv2.resize(mask / mask.max(), (h, w))[..., np.newaxis]
|
17 |
+
|
18 |
+
# Apply colormap to mask
|
19 |
+
cmap = cv2.applyColorMap(np.uint8(255 * mask), colormap_attn)
|
20 |
+
|
21 |
+
print(cmap.shape)
|
22 |
+
# Blend mask and original image
|
23 |
+
# grayscale_img = cv2.cvtColor(np.uint8(original_image), cv2.COLOR_RGB2GRAY)
|
24 |
+
# grayscale_img = cv2.cvtColor(grayscale_img, cv2.COLOR_GRAY2RGB)
|
25 |
+
# alpha_blended = cv2.addWeighted(np.uint8(original_image),1, cmap, alpha_attn, 0)
|
26 |
+
alpha_blended = cv2.addWeighted(np.uint8(original_image),0.1, cmap, 0.9, 0)
|
27 |
+
|
28 |
+
|
29 |
+
# alpha_blended = cmap
|
30 |
+
|
31 |
+
|
32 |
+
# Save image
|
33 |
+
final_im = Image.fromarray(alpha_blended)
|
34 |
+
# final_im = final_im.crop((0,0,250,250))
|
35 |
+
return final_im
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
class VITAttentionGradRollout:
|
40 |
+
'''
|
41 |
+
Expects timm ViT transformer model
|
42 |
+
Adapted from https://github.com/samiraabnar/attention_flow
|
43 |
+
'''
|
44 |
+
def __init__(self, model, head_fusion='min', discard_ratio=0):
|
45 |
+
self.model = model
|
46 |
+
self.head_fusion = head_fusion
|
47 |
+
self.discard_ratio = discard_ratio
|
48 |
+
print(list(model.blocks.children()))
|
49 |
+
|
50 |
+
self.attentions = {}
|
51 |
+
for idx, module in enumerate(list(model.blocks.children())):
|
52 |
+
module.attn.register_forward_hook(self.get_attention(f"attn{idx}"))
|
53 |
+
|
54 |
+
|
55 |
+
def get_attention(self, name):
|
56 |
+
def hook(module, input, output):
|
57 |
+
with torch.no_grad():
|
58 |
+
input = input[0]
|
59 |
+
B, N, C = input.shape
|
60 |
+
qkv = (
|
61 |
+
module.qkv(input)
|
62 |
+
.detach()
|
63 |
+
.reshape(B, N, 3, module.num_heads, C // module.num_heads)
|
64 |
+
.permute(2, 0, 3, 1, 4)
|
65 |
+
)
|
66 |
+
q, k, _ = (
|
67 |
+
qkv[0],
|
68 |
+
qkv[1],
|
69 |
+
qkv[2],
|
70 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
71 |
+
attn = (q @ k.transpose(-2, -1)) * module.scale
|
72 |
+
attn = attn.softmax(dim=-1)
|
73 |
+
self.attentions[name] = attn
|
74 |
+
return hook
|
75 |
+
|
76 |
+
def get_attn_mask(self,k=0):
|
77 |
+
attn_key = "attn" + str()
|
78 |
+
result = torch.eye(self.attentions['attn0'].size(-1)).to(self.attentions['attn0'].device)
|
79 |
+
|
80 |
+
# result = torch.eye(self.attentions['attn2'].size(-1)).to(self.attentions['attn2'].device)
|
81 |
+
with torch.no_grad():
|
82 |
+
# for attention in self.attentions.values():
|
83 |
+
for k in range(11, len(self.attentions.keys())):
|
84 |
+
attention = self.attentions[f'attn{k}']
|
85 |
+
if self.head_fusion == "mean":
|
86 |
+
attention_heads_fused = attention.mean(axis=1)
|
87 |
+
elif self.head_fusion == "max":
|
88 |
+
attention_heads_fused = attention.max(axis=1)[0]
|
89 |
+
elif self.head_fusion == "min":
|
90 |
+
attention_heads_fused = attention.min(axis=1)[0]
|
91 |
+
else:
|
92 |
+
raise "Attention head fusion type Not supported"
|
93 |
+
|
94 |
+
# Drop the lowest attentions, but
|
95 |
+
# don't drop the class token
|
96 |
+
flat = attention_heads_fused.view(attention_heads_fused.size(0), -1)
|
97 |
+
_, indices = flat.topk(int(flat.size(-1)*self.discard_ratio), -1, False)
|
98 |
+
indices = indices[indices != 0]
|
99 |
+
flat[0, indices] = 0
|
100 |
+
I = torch.eye(attention_heads_fused.size(-1)).to(attention_heads_fused.device)
|
101 |
+
a = (attention_heads_fused + 1.0*I)/2
|
102 |
+
a = a / a.sum(dim=-1).unsqueeze(-1)
|
103 |
+
|
104 |
+
result = torch.matmul(a, result)
|
105 |
+
|
106 |
+
# Look at the total attention between the class token,
|
107 |
+
# and the image patches
|
108 |
+
mask = result[0, 0 , 1 :]
|
109 |
+
# In case of 224x224 image, this brings us from 196 to 14
|
110 |
+
width = int(mask.size(-1)**0.5)
|
111 |
+
mask = mask.reshape(width, width).detach().cpu().numpy()
|
112 |
+
mask = mask / np.max(mask)
|
113 |
+
return mask
|
imgs/adroit1.jpg
ADDED
![]() |
imgs/cheetah.jpg
ADDED
![]() |
imgs/ego4d.jpg
ADDED
![]() |
imgs/ego4d_2.jpg
ADDED
![]() |
imgs/ego4d_3.jpg
ADDED
![]() |
imgs/kitchen.jpg
ADDED
![]() |
imgs/reacher.jpg
ADDED
![]() |
imgs/rearrange.jpg
ADDED
![]() |
imgs/trifinger1.jpg
ADDED
![]() |
imgs/walker.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
omegaconf
|
2 |
+
pillow
|
3 |
+
opencv-python
|
4 |
+
torch
|
5 |
+
numpy
|
6 |
+
hydra-core
|
7 |
+
gradio
|
8 |
+
huggingface_hub
|
9 |
+
matplotlib
|
10 |
+
git+https://github.com/facebookresearch/eai-vc.git@main#subdirectory=vc_models
|