File size: 5,668 Bytes
5a03db1
 
11e8a80
5a03db1
 
 
34d287c
 
 
5a03db1
34d287c
 
5a03db1
34d287c
 
 
5a03db1
34d287c
 
 
5a03db1
11e8a80
34d287c
11e8a80
 
34d287c
 
5a03db1
34d287c
 
 
5a03db1
34d287c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a03db1
 
 
34d287c
 
 
 
 
 
5a03db1
34d287c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a03db1
34d287c
 
 
 
 
5a03db1
34d287c
5a03db1
34d287c
 
 
5a03db1
34d287c
 
5a03db1
34d287c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e8a80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import cv2
import torch
import numpy as np
import gradio as gr

import trimesh
import sys
import os

sys.path.append('vggsfm_code/')
import shutil

from vggsfm_code.hf_demo import demo_fn
from omegaconf import DictConfig, OmegaConf
from viz_utils.viz_fn import add_camera

# 
from scipy.spatial.transform import Rotation
import PIL


import spaces

@spaces.GPU
def vggsfm_demo(
    input_image,
    input_video,
    query_frame_num,
    max_query_pts
    # grid_size: int = 10,
):
    cfg_file = "vggsfm_code/cfgs/demo.yaml"
    cfg = OmegaConf.load(cfg_file)

    max_input_image = 20

    target_dir = f"input_images"
    if os.path.exists(target_dir): 
        shutil.rmtree(target_dir)

    os.makedirs(target_dir)
    target_dir_images = target_dir + "/images"
    os.makedirs(target_dir_images)

    if input_image is not None:
        if len(input_image)<3:
            return None, "Please input at least three frames"

        input_image = sorted(input_image)
        input_image = input_image[:max_input_image]
        
        # Copy files to the new directory
        for file_name in input_image:
            shutil.copy(file_name, target_dir_images)
    elif input_video is not None:
        vs = cv2.VideoCapture(input_video)

        fps = vs.get(cv2.CAP_PROP_FPS)

        frame_rate = 1
        frame_interval = int(fps * frame_rate)
        
        video_frame_num = 0
        count = 0 
        
        while video_frame_num<=max_input_image:
            (gotit, frame) = vs.read()
            count +=1
            
            if count % frame_interval == 0:
                cv2.imwrite(target_dir_images+"/"+f"{video_frame_num:06}.png", frame)
                video_frame_num+=1
            if not gotit:
                break
        if video_frame_num<3:
            return None, "Please input at least three frames"
    else:
        return None, "Input format incorrect"
        
    cfg.query_frame_num = query_frame_num
    cfg.max_query_pts = max_query_pts
    print(f"Files have been copied to {target_dir_images}")
    cfg.SCENE_DIR = target_dir
    
    predictions = demo_fn(cfg)
    
    glbfile = vggsfm_predictions_to_glb(predictions)
    
    
    print(input_image)
    print(input_video)
    return glbfile, "Success"




def vggsfm_predictions_to_glb(predictions):
    # learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py
    points3D = predictions["points3D"].cpu().numpy()
    points3D_rgb = predictions["points3D_rgb"].cpu().numpy()
    points3D_rgb = (points3D_rgb*255).astype(np.uint8)
    
    extrinsics_opencv = predictions["extrinsics_opencv"].cpu().numpy()
    intrinsics_opencv = predictions["intrinsics_opencv"].cpu().numpy()
    raw_image_paths = predictions["raw_image_paths"]
    images = predictions["images"].permute(0,2,3,1).cpu().numpy()
    images = (images*255).astype(np.uint8)
    
    glbscene = trimesh.Scene()
    point_cloud = trimesh.PointCloud(points3D, colors=points3D_rgb)
    glbscene.add_geometry(point_cloud)


    camera_edge_colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204),
                (128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)]

    frame_num = len(extrinsics_opencv)
    extrinsics_opencv_4x4 = np.zeros((frame_num, 4, 4))
    extrinsics_opencv_4x4[:, :3, :4] = extrinsics_opencv
    extrinsics_opencv_4x4[:, 3, 3] = 1

    for idx in range(frame_num):
        cam_from_world = extrinsics_opencv_4x4[idx]
        cam_to_world = np.linalg.inv(cam_from_world)
        cur_cam_color = camera_edge_colors[idx % len(camera_edge_colors)]
        cur_focal = intrinsics_opencv[idx, 0, 0]

        # cur_image_path = raw_image_paths[idx]

        # cur_image = np.array(PIL.Image.open(cur_image_path))
        # add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=cur_image.shape[1::-1], 
                #    focal=None,screen_width=0.3)

        add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=(1024,1024), 
                   focal=None,screen_width=0.35)

    opengl_mat = np.array([[1, 0, 0, 0],
                    [0, -1, 0, 0],
                    [0, 0, -1, 0],
                    [0, 0, 0, 1]])

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    glbscene.apply_transform(np.linalg.inv(np.linalg.inv(extrinsics_opencv_4x4[0]) @ opengl_mat @ rot))

    glbfile = "glbscene.glb"
    glbscene.export(file_obj=glbfile)    
    return glbfile





if True:
    demo = gr.Interface(
        title="🎨 VGGSfM: Visual Geometry Grounded Deep Structure From Motion",
        description="<div style='text-align: left;'> \
        <p>Welcome to <a href='https://github.com/facebookresearch/vggsfm' target='_blank'>VGGSfM</a>!",
        fn=vggsfm_demo,
        inputs=[
            gr.File(file_count="multiple", label="Input Images", interactive=True),
            gr.Video(label="Input video", interactive=True),
            gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of query images"),
            gr.Slider(minimum=512, maximum=4096, step=1, value=1024, label="Number of query points"),
        ],
        outputs=[gr.Model3D(label="Reconstruction"), gr.Textbox(label="Log")],
        cache_examples=True,
        allow_flagging=False,
    )
    demo.queue(max_size=20, concurrency_count=1).launch(debug=True)

    # demo.launch(debug=True, share=True)
else:
    import glob
    files = glob.glob(f'vggsfm_code/examples/cake/images/*', recursive=True)
    vggsfm_demo(files, None, None)

    
# demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True)