Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,303 Bytes
5a03db1 11e8a80 5a03db1 11e8a80 5a03db1 11e8a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
def parse_video(video_file):
vs = cv2.VideoCapture(video_file)
frames = []
while True:
(gotit, frame) = vs.read()
if frame is not None:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
if not gotit:
break
return np.stack(frames)
@spaces.GPU
def cotracker_demo(
input_video,
grid_size: int = 10,
tracks_leave_trace: bool = False,
):
load_video = parse_video(input_video)
load_video = torch.from_numpy(load_video).permute(0, 3, 1, 2)[None].float()
import time
def current_milli_time():
return round(time.time() * 1000)
filename = str(current_milli_time())
return os.path.join(
os.path.dirname(__file__), "results", f"{filename}.mp4"
)
app = gr.Interface(
title="🎨 CoTracker: It is Better to Track Together",
description="<div style='text-align: left;'> \
<p>Welcome to <a href='http://co-tracker.github.io' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \
Points are sampled on a regular grid and are tracked jointly. </p> \
<p> To get started, simply upload your <b>.mp4</b> video in landscape orientation or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \
<ul style='display: inline-block; text-align: left;'> \
<li>The total number of grid points is the square of <b>Grid Size</b>.</li> \
<li>Check <b>Visualize Track Traces</b> to visualize traces of all the tracked points. </li> \
</ul> \
<p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐</p> \
</div>",
fn=cotracker_demo,
inputs=[
gr.Video(type="file", label="Input video", interactive=True),
gr.Slider(minimum=10, maximum=80, step=1, value=10, label="Number of tracks"),
],
outputs=gr.Video(label="Video with predicted tracks"),
cache_examples=True,
allow_flagging=False,
)
app.queue(max_size=20, concurrency_count=1).launch(debug=True)
|