Spaces:
Running
Running
from llama_index.core import ( | |
Settings, | |
load_index_from_storage, | |
StorageContext, | |
) | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.llms.openai import OpenAI | |
import gradio as gr | |
import os | |
""" | |
Code adopted from Beebom article: "How to Train an AI Chatbot With Custom Knowledge Base Using ChatGPT API" by Arjun Sha | |
https://beebom.com/how-train-ai-chatbot-custom-knowledge-base-chatgpt-api/ | |
Updated Feb 22, 2025 to use updated OpenAI API and Llama Index library | |
""" | |
max_input_size = 4096 | |
num_outputs = 512 | |
chunk_size_limit = 600 | |
chunk_overlap = int(chunk_size_limit * 0.1) | |
llm = OpenAI( | |
model="gpt-3.5-turbo", | |
temperature=0.5, | |
max_tokens=num_outputs | |
) | |
Settings.llm = llm | |
Settings.node_parser = SentenceSplitter( | |
chunk_size=chunk_size_limit, | |
chunk_overlap=chunk_overlap | |
) | |
Settings.context_window = max_input_size | |
Settings.num_output = num_outputs | |
def retrieve_index(index_path): | |
storage_context = StorageContext.from_defaults(persist_dir=index_path) | |
index = load_index_from_storage(storage_context) | |
return index | |
def chatbot(input_text): | |
response = QE.query(input_text) | |
response_stream = "" | |
for r in response.response_gen: | |
response_stream += r | |
yield response_stream | |
if __name__ == "__main__": | |
iface = gr.Interface(fn=chatbot, | |
inputs=gr.components.Textbox(lines=7, label="Enter your text"), | |
outputs="text", | |
title="AI Chatbot for the Doing What Works Library") | |
index = retrieve_index("dww_vectors") | |
QE = index.as_query_engine(streaming=True) | |
iface.launch(share=False) |