fady21 commited on
Commit
1a7a8db
·
verified ·
1 Parent(s): 2f9311e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import joblib
3
+ import numpy as np
4
+ import gradio as gr
5
+ from pathlib import Path
6
+ import sys
7
+
8
+ # Get the current directory of the script or fallback to the current working directory
9
+ if hasattr(sys, 'frozen'):
10
+ current_dir = Path(sys.executable).parent
11
+ elif '__file__' in globals():
12
+ current_dir = os.path.dirname(os.path.abspath(__file__))
13
+ else:
14
+ current_dir = Path().absolute()
15
+
16
+ # Load the trained model from the same directory
17
+ model_path = os.path.join(current_dir, "trained_model.joblib")
18
+ model = joblib.load(model_path)
19
+
20
+ # Define the prediction function
21
+ def predict_department(CSC101_total, CSC201_total, CSC203_total, CSC205_total, CSC102_total,
22
+ MAT202_total, MAT203_total, MAT103_total, CSC206_total, MAN101_total,
23
+ SWE201_total, SWE301_total, SWE303_total, CNE202_total, CNE203_total,
24
+ CNE304_total, CSC301_total, CNE302_total, CSC309_total, CSC302_total,
25
+ CSC303_total, CNE308_total):
26
+
27
+ try:
28
+ # Convert the input data to a numpy array
29
+ input_data = np.array([[CSC101_total, CSC201_total, CSC203_total, CSC205_total,
30
+ CSC102_total, MAT202_total, MAT203_total, MAT103_total,
31
+ CSC206_total, MAN101_total, SWE201_total, SWE301_total,
32
+ SWE303_total, CNE202_total, CNE203_total, CNE304_total,
33
+ CSC301_total, CNE302_total, CSC309_total, CSC302_total,
34
+ CSC303_total, CNE308_total]])
35
+
36
+ # Make the prediction
37
+ prediction = model.predict(input_data)
38
+
39
+ # Map the prediction to department name
40
+ department_mapping = {0: 'Swe', 1: 'Cs', 2: 'Cne', 3: 'Ai'}
41
+ predicted_department = department_mapping[prediction[0]]
42
+
43
+ return predicted_department
44
+
45
+ except Exception as e:
46
+ return str(e)
47
+
48
+ # Define the Gradio interface
49
+ input_labels = ["CSC101_total", "CSC201_total", "CSC203_total", "CSC205_total", "CSC102_total",
50
+ "MAT202_total", "MAT203_total", "MAT103_total", "CSC206_total", "MAN101_total",
51
+ "SWE201_total", "SWE301_total", "SWE303_total", "CNE202_total", "CNE203_total",
52
+ "CNE304_total", "CSC301_total", "CNE302_total", "CSC309_total", "CSC302_total",
53
+ "CSC303_total", "CNE308_total"]
54
+
55
+ # Create a list of number inputs corresponding to the input labels
56
+ inputs = [gr.Number(label=label) for label in input_labels]
57
+
58
+ # Define the output as a text box that will show the predicted department
59
+ output = gr.Textbox(label="Predicted Department")
60
+
61
+ # Create the Gradio app interface
62
+ app = gr.Interface(fn=predict_department, inputs=inputs, outputs=output, title="Department Predictor")
63
+
64
+ # Launch the app
65
+ if __name__ == "__main__":
66
+ app.launch()