Update app.py
Browse files
app.py
CHANGED
@@ -37,39 +37,39 @@ def save_model_artifacts(regressor, scaler, pca):
|
|
37 |
with open('pca.pkl', 'wb') as f:
|
38 |
pickle.dump(pca, f, protocol=pickle.HIGHEST_PROTOCOL)
|
39 |
|
40 |
-
def preprocess_data(X):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
|
59 |
def predict_slump(cement, blast_furnace_slag, fly_ash, water, superplasticizer, coarse_aggregate, fine_aggregate, FLOW):
|
60 |
# Prepare the input data
|
61 |
X = np.array([[cement, blast_furnace_slag, fly_ash, water, superplasticizer, coarse_aggregate, fine_aggregate, FLOW]])
|
62 |
|
63 |
# Preprocess the data
|
64 |
-
X_preprocessed = preprocess_data(X)
|
65 |
-
print("predict_slump X",X)
|
66 |
-
print("predict_slump X_preprocessed",X_preprocessed)
|
67 |
|
68 |
# Load the trained model
|
69 |
regressor = joblib.load('slump_regressor.pkl')
|
70 |
|
71 |
# Make the prediction
|
72 |
-
slump_prediction = regressor.predict(
|
73 |
|
74 |
return slump_prediction
|
75 |
|
|
|
37 |
with open('pca.pkl', 'wb') as f:
|
38 |
pickle.dump(pca, f, protocol=pickle.HIGHEST_PROTOCOL)
|
39 |
|
40 |
+
# def preprocess_data(X):
|
41 |
+
# print('preprocess_data X',X)
|
42 |
+
# # Load the trained scaler and PCA
|
43 |
+
# scaler = joblib.load('scaler.pkl')
|
44 |
+
# pca = joblib.load('pca.pkl')
|
45 |
|
46 |
+
# # Check if the input has 8 features
|
47 |
+
# if X.shape[1] != 8:
|
48 |
+
# raise ValueError("Input data should have 8 features.")
|
49 |
|
50 |
+
# # Scale the input data using the loaded scaler
|
51 |
+
# X_scaled = scaler.transform(X)
|
52 |
+
# print("X_scaled",X_scaled)
|
53 |
+
# # Apply PCA using the loaded PCA transformer
|
54 |
+
# # X_pca = pca.transform(X_scaled) somehow dapat 4
|
55 |
+
# # print("X_pca",X_pca)
|
56 |
|
57 |
+
# return X_pca
|
58 |
|
59 |
def predict_slump(cement, blast_furnace_slag, fly_ash, water, superplasticizer, coarse_aggregate, fine_aggregate, FLOW):
|
60 |
# Prepare the input data
|
61 |
X = np.array([[cement, blast_furnace_slag, fly_ash, water, superplasticizer, coarse_aggregate, fine_aggregate, FLOW]])
|
62 |
|
63 |
# Preprocess the data
|
64 |
+
# X_preprocessed = preprocess_data(X)
|
65 |
+
# print("predict_slump X",X)
|
66 |
+
# print("predict_slump X_preprocessed",X_preprocessed)
|
67 |
|
68 |
# Load the trained model
|
69 |
regressor = joblib.load('slump_regressor.pkl')
|
70 |
|
71 |
# Make the prediction
|
72 |
+
slump_prediction = regressor.predict(X)[0]
|
73 |
|
74 |
return slump_prediction
|
75 |
|