Update app.py
Browse files
app.py
CHANGED
@@ -6,20 +6,19 @@ import joblib # or import pickle if you used it to save your model
|
|
6 |
model = joblib.load('random_forest_model.pkl') # replace with your model path
|
7 |
|
8 |
# Function to predict price
|
9 |
-
def predict_price(host_id, neighbourhood_group, room_type,
|
10 |
# Create a DataFrame for the input data
|
11 |
custom_data = pd.DataFrame({
|
12 |
'host_id': [host_id],
|
13 |
-
'
|
14 |
-
'
|
15 |
-
'
|
16 |
-
'
|
17 |
-
'
|
18 |
'room_type_Shared room': [1 if room_type == 'Shared room' else 0],
|
19 |
'room_type_Private room': [1 if room_type == 'Private room' else 0],
|
20 |
'room_type_Entire home/apt': [1 if room_type == 'Entire home/apt' else 0],
|
21 |
-
'
|
22 |
-
'number_of_reviews': [reviews],
|
23 |
'calculated_host_listings_count': [calculated_host_listings_count],
|
24 |
'latitude': [latitude],
|
25 |
'longitude': [longitude]
|
@@ -36,7 +35,6 @@ interface = gr.Interface(
|
|
36 |
gr.Number(label="Host ID"),
|
37 |
gr.Dropdown(["Brooklyn", "Manhattan", "Queens", "Bronx", "Staten Island"], label="Neighbourhood Group"),
|
38 |
gr.Dropdown(["Shared room", "Private room", "Entire home/apt"], label="Room Type"),
|
39 |
-
gr.Number(label="Price"),
|
40 |
gr.Number(label="Number of Reviews"),
|
41 |
gr.Number(label="Calculated Host Listings Count"),
|
42 |
gr.Number(label="Latitude"),
|
@@ -49,3 +47,7 @@ interface = gr.Interface(
|
|
49 |
|
50 |
# Launch the interface
|
51 |
interface.launch()
|
|
|
|
|
|
|
|
|
|
6 |
model = joblib.load('random_forest_model.pkl') # replace with your model path
|
7 |
|
8 |
# Function to predict price
|
9 |
+
def predict_price(host_id, neighbourhood_group, room_type, number_of_reviews, calculated_host_listings_count, latitude, longitude):
|
10 |
# Create a DataFrame for the input data
|
11 |
custom_data = pd.DataFrame({
|
12 |
'host_id': [host_id],
|
13 |
+
'neighbourhood_Brooklyn': [1 if neighbourhood_group == 'Brooklyn' else 0],
|
14 |
+
'neighbourhood_Manhattan': [1 if neighbourhood_group == 'Manhattan' else 0],
|
15 |
+
'neighbourhood_Queens': [1 if neighbourhood_group == 'Queens' else 0],
|
16 |
+
'neighbourhood_Bronx': [1 if neighbourhood_group == 'Bronx' else 0],
|
17 |
+
'neighbourhood_Staten Island': [1 if neighbourhood_group == 'Staten Island' else 0],
|
18 |
'room_type_Shared room': [1 if room_type == 'Shared room' else 0],
|
19 |
'room_type_Private room': [1 if room_type == 'Private room' else 0],
|
20 |
'room_type_Entire home/apt': [1 if room_type == 'Entire home/apt' else 0],
|
21 |
+
'number_of_reviews': [number_of_reviews],
|
|
|
22 |
'calculated_host_listings_count': [calculated_host_listings_count],
|
23 |
'latitude': [latitude],
|
24 |
'longitude': [longitude]
|
|
|
35 |
gr.Number(label="Host ID"),
|
36 |
gr.Dropdown(["Brooklyn", "Manhattan", "Queens", "Bronx", "Staten Island"], label="Neighbourhood Group"),
|
37 |
gr.Dropdown(["Shared room", "Private room", "Entire home/apt"], label="Room Type"),
|
|
|
38 |
gr.Number(label="Number of Reviews"),
|
39 |
gr.Number(label="Calculated Host Listings Count"),
|
40 |
gr.Number(label="Latitude"),
|
|
|
47 |
|
48 |
# Launch the interface
|
49 |
interface.launch()
|
50 |
+
|
51 |
+
print("Custom Data Columns:", custom_data.columns.tolist())
|
52 |
+
print("Model Training Features:", model.feature_names_in_)
|
53 |
+
|