aa
Browse filesaaa
app.py
CHANGED
@@ -5,22 +5,11 @@ import joblib
|
|
5 |
# Load your Random Forest model
|
6 |
loaded_model = joblib.load('random_forest_model.pkl')
|
7 |
|
8 |
-
# Define the
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
'number_of_reviews',
|
14 |
-
'calculated_host_listings_count',
|
15 |
-
'room_type_Entire home/apt',
|
16 |
-
'room_type_Private room',
|
17 |
-
'room_type_Shared room',
|
18 |
-
'neighbourhood_group_Bronx',
|
19 |
-
'neighbourhood_group_Brooklyn',
|
20 |
-
'neighbourhood_group_Manhattan',
|
21 |
-
'neighbourhood_group_Queens',
|
22 |
-
'neighbourhood_group_Staten Island',
|
23 |
-
]
|
24 |
|
25 |
# Function to make predictions
|
26 |
def predict(host_id, neighbourhood_group, neighbourhood, room_type, latitude, longitude, number_of_reviews, calculated_host_listings_count):
|
@@ -40,7 +29,7 @@ def predict(host_id, neighbourhood_group, neighbourhood, room_type, latitude, lo
|
|
40 |
input_data = pd.get_dummies(input_data, columns=['room_type', 'neighbourhood_group', 'neighbourhood'], drop_first=True)
|
41 |
|
42 |
# Ensure the input data has the same columns as the training data
|
43 |
-
input_data = input_data.reindex(columns=
|
44 |
|
45 |
# Make the prediction
|
46 |
predicted_price = loaded_model.predict(input_data)
|
@@ -51,16 +40,18 @@ iface = gr.Interface(
|
|
51 |
fn=predict,
|
52 |
inputs=[
|
53 |
gr.Number(label="Host ID"),
|
54 |
-
gr.Dropdown(label="Neighbourhood Group", choices=[
|
55 |
-
gr.Dropdown(label="Neighbourhood", choices=[
|
56 |
-
gr.Dropdown(label="Room Type", choices=[
|
57 |
gr.Number(label="Latitude"),
|
58 |
gr.Number(label="Longitude"),
|
59 |
gr.Number(label="Number of Reviews"),
|
60 |
-
gr.Number(label="Calculated Host Listings Count")
|
61 |
],
|
62 |
-
outputs="
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
# Launch the
|
66 |
iface.launch()
|
|
|
5 |
# Load your Random Forest model
|
6 |
loaded_model = joblib.load('random_forest_model.pkl')
|
7 |
|
8 |
+
# Example: Define the training DataFrame X (replace with your actual training data)
|
9 |
+
# This should be a DataFrame with the same structure as your training data
|
10 |
+
X = pd.DataFrame(columns=['host_id', 'neighbourhood_group', 'neighbourhood', 'room_type',
|
11 |
+
'latitude', 'longitude', 'number_of_reviews',
|
12 |
+
'calculated_host_listings_count']) # Add one-hot encoded columns as well
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Function to make predictions
|
15 |
def predict(host_id, neighbourhood_group, neighbourhood, room_type, latitude, longitude, number_of_reviews, calculated_host_listings_count):
|
|
|
29 |
input_data = pd.get_dummies(input_data, columns=['room_type', 'neighbourhood_group', 'neighbourhood'], drop_first=True)
|
30 |
|
31 |
# Ensure the input data has the same columns as the training data
|
32 |
+
input_data = input_data.reindex(columns=X.columns, fill_value=0)
|
33 |
|
34 |
# Make the prediction
|
35 |
predicted_price = loaded_model.predict(input_data)
|
|
|
40 |
fn=predict,
|
41 |
inputs=[
|
42 |
gr.Number(label="Host ID"),
|
43 |
+
gr.Dropdown(label="Neighbourhood Group", choices=["Manhattan", "Brooklyn", "Queens", "Staten Island", "Bronx"]),
|
44 |
+
gr.Dropdown(label="Neighbourhood", choices=["Chelsea", "East Village", "Midtown", "SoHo", "Williamsburg"]), # Add actual neighbourhood options
|
45 |
+
gr.Dropdown(label="Room Type", choices=["Entire home/apt", "Private room", "Shared room"]),
|
46 |
gr.Number(label="Latitude"),
|
47 |
gr.Number(label="Longitude"),
|
48 |
gr.Number(label="Number of Reviews"),
|
49 |
+
gr.Number(label="Calculated Host Listings Count")
|
50 |
],
|
51 |
+
outputs=gr.Number(label="Predicted Price"),
|
52 |
+
title="Airbnb Price Prediction",
|
53 |
+
description="Enter the details of the Airbnb listing to predict the price."
|
54 |
)
|
55 |
|
56 |
+
# Launch the interface
|
57 |
iface.launch()
|