Spaces:
Running
Running
import os | |
from langchain_community.vectorstores import Pinecone | |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langchain.retrievers.document_compressors import FlashrankRerank | |
from langchain.retrievers import EnsembleRetriever, BM25Retriever | |
from langchain_core.tools import tool | |
from typing import Any | |
from apps.agent.utils import load_and_split_docs | |
from apps.agent.constant import ( | |
INDEX_NAME_WEWEB, | |
INDEX_NAME_XANO, | |
URLS_WEWEB, | |
URLS_XANO, | |
) | |
embeddings = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-small-en") | |
compressor = FlashrankRerank(model="ms-marco-MiniLM-L-12-v2") | |
def ensemble_retriever(index_name: str, docs: Any, embeddings, compressor): | |
# retriever | |
vectorstore = Pinecone.from_existing_index(embedding=embeddings, index_name=index_name) | |
retriever = vectorstore.as_retriever() | |
# bm25 | |
bm25 = BM25Retriever.from_documents(docs) | |
bm25.k = 6 | |
ensemble_retriever = EnsembleRetriever(retrievers=[retriever, bm25], | |
weights=[0.6, 0.4]) | |
# reranker | |
reranker_retriever = ContextualCompressionRetriever( | |
base_compressor=compressor, base_retriever=ensemble_retriever | |
) | |
return reranker_retriever | |
# load data | |
data_xano = load_and_split_docs(URLS_XANO) | |
data_weweb = load_and_split_docs(URLS_WEWEB) | |
# create retriever | |
retriever_xano = ensemble_retriever(INDEX_NAME_XANO, data_xano, embeddings, compressor) | |
retriever_weweb = ensemble_retriever(INDEX_NAME_WEWEB, data_weweb, embeddings, compressor) | |
def tool_xano(query: str): | |
""" | |
Searches and returns excerpts from the Xano documentation | |
""" | |
return retriever_xano.invoke(query) | |
def tool_weweb(query: str): | |
""" | |
Searches and returns excerpts from the Weweb documentation | |
""" | |
return retriever_weweb.invoke(query) |