import os from langchain_community.vectorstores.pinecone import Pinecone from langchain_community.embeddings.fastembed import FastEmbedEmbeddings from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import FlashrankRerank from langchain_core.tools import tool from apps.agent.constant import INDEX_NAME_WEWEB, INDEX_NAME_XANO # os.environ["PINECONE_API_KEY"] = "a526d62f-ccca-40d6-859b-3d878c8d288b" embeddings = FastEmbedEmbeddings(model_name="BAAI/bge-small-en-v1.5") compressor = FlashrankRerank() def create_compressed_retriever(index_name: str, embeddings, compressor) -> ContextualCompressionRetriever: vectorstore = Pinecone.from_existing_index(embedding=embeddings, index_name=index_name) retriever = vectorstore.as_retriever() return ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever) reranker_xano = create_compressed_retriever(INDEX_NAME_XANO, embeddings, compressor) reranker_weweb = create_compressed_retriever(INDEX_NAME_WEWEB, embeddings, compressor) @tool def tool_xano(query: str): """ Searches and returns excerpts from the Xano documentation """ docs = reranker_xano.invoke(query) return "\n\n".join([doc["page_content"] for doc in docs]) @tool def tool_weweb(query: str): """ Searches and returns excerpts from the Weweb documentation """ docs = reranker_weweb.invoke(query) return "\n\n".join([doc["page_content"] for doc in docs])