fahrendrakhoirul commited on
Commit
c7f5132
Β·
0 Parent(s):
Home.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # streamlit
2
+ import streamlit as st
3
+ import pandas as pd
4
+
5
+ st.set_page_config(page_title="Home", page_icon="🏠", layout="centered")
6
+
7
+ st.markdown("# πŸ›οΈ Aspect-Based Multilabel Classification of Ecommerce Reviews")
8
+ st.write("Ever wondered what people think about the products, customer service, and shipping of your favorite online store? Try this out!")
9
+
10
+ # help me create sidebar
11
+ st.sidebar.markdown("## πŸ“š About"
12
+ "\nThis is a simple web app to classify the aspect of reviews from an e-commerce dataset."
13
+ "\n\nThe dataset used is a multilabel dataset, which means a review can have multiple labels."
14
+ "\n\nThe labels are:"
15
+ "\n- πŸ“¦ **Product**"
16
+ "\n- πŸ‘©β€πŸ’Ό **Customer Service**"
17
+ "\n- 🚚 **Shipping/Delivery**")
18
+
19
+ # add create by Fahrendra Khoirul Ihtada and Rizha Alfianita using streamlit and Hugging Face's IndoBERT model
20
+ st.sidebar.markdown("## πŸ‘¨β€πŸ’» Created by"
21
+ "\n[Fahrendra Khoirul Ihtada](https://www.linkedin.com/in/fahrendra-khoirul-ihtada/) "
22
+ "and [Rizha Alfianita](https://www.linkedin.com/in/rizha-alfianita/)"
23
+ "\n Using Streamlit and Hugging Face's [IndoBERT](https://huggingface.co/indobenchmark/indobert-base-p1) model.")
24
+
25
+ # add my hugging face profile
26
+ st.sidebar.markdown("## πŸ€– Hugging Face"
27
+ "\n- [Fahrendra Khoirul Ihtada](https://huggingface.co/fahrendrakhoirul)")
28
+
29
+
30
+
31
+ # import here because why not??
32
+ import model_services.pipeline as pipeline
33
+
34
+ container_1 = st.container(border=True)
35
+
36
+
37
+ # create rows and 2 dropdown menus side by side
38
+ row1_1, row1_2 = container_1.columns((2, 1))
39
+ with row1_1:
40
+ df = pd.read_json("Product Reviews Ecommerce Multilabel Dataset.json", lines=True)
41
+ selected_review = st.selectbox(
42
+ "You can pick a review from dataset",
43
+ df["review"].values,
44
+ )
45
+ with row1_2:
46
+ selected_model = st.selectbox(
47
+ "Choose the model",
48
+ ("IndoBERT", "IndoBERT-CNN (Best)", "IndoBERT-LSTM"),
49
+ )
50
+
51
+ # text input
52
+ input_review = container_1.text_area("Or you can input multiple review with separated line", selected_review, height=200)
53
+
54
+ # create button submit
55
+ button_submit = container_1.button("Classify")
56
+
57
+
58
+ def show_label_desc():
59
+ st.divider()
60
+ st.write("Let's see what is the meaning of eachΒ labels:")
61
+ st.write("- πŸ“¦**Product** : related Customer satisfaction with the quality, performance, and conformity of the product to the description given")
62
+ st.write("- πŸ‘©β€πŸ’Ό**Customer Service** : Interaction between customers and sellers, friendliness and speed of response from sellers, and handling complaints.")
63
+ st.write("- 🚚**Shipping/Delivery** : related to shipping speed, condition of goods when received, and timeliness of shipping")
64
+
65
+ def submit():
66
+ # Create UI for Result
67
+ st.success("Done! πŸ‘Œ")
68
+ outputs = do_calculation(input_review)
69
+ # input_review = ""
70
+ show_result(outputs)
71
+ show_label_desc()
72
+
73
+ def do_calculation(texts):
74
+ # split text by newline
75
+ reviews = texts.split("\n")
76
+ # remove empty string
77
+ reviews = list(filter(None, reviews))
78
+ # do the prediction
79
+ outputs = pipeline.get_result(reviews, selected_model)
80
+ return outputs
81
+
82
+ st.markdown("""
83
+ <style>
84
+ .label-container {
85
+ display: flex;
86
+ flex-wrap: wrap;
87
+ gap: 5px;
88
+ }
89
+ .rounded-label-product {
90
+ background-color: #FFD700;
91
+ color: black;
92
+ border-radius: 20px;
93
+ padding: 5px 10px;
94
+ font-size: 14px;
95
+ margin-bottom: 20px;
96
+ }
97
+
98
+ .rounded-label-customer-service {
99
+ background-color: #FFA07A;
100
+ color: black;
101
+ border-radius: 20px;
102
+ padding: 5px 10px;
103
+ font-size: 14px;
104
+ margin-bottom: 20px;
105
+ }
106
+
107
+ .rounded-label-shipping-delivery {
108
+ background-color: #20B2AA;
109
+ color: black;
110
+ border-radius: 20px;
111
+ padding: 5px 10px;
112
+ font-size: 14px;
113
+ margin-bottom: 20px;
114
+ }
115
+
116
+ .rounded-label-undefined {
117
+ background-color: #DCDCDC;
118
+ color: black;
119
+ border-radius: 20px;
120
+ padding: 5px 10px;
121
+ font-size: 14px;
122
+ margin-bottom: 20px;
123
+ }
124
+
125
+ </style>
126
+ """, unsafe_allow_html=True)
127
+
128
+ def chips_label(output):
129
+ asd = []
130
+ for label in output["predicted_labels"]:
131
+ if label == "Product":
132
+ score = f"{output["predicted_score"][0] * 100:.2f}%"
133
+ score = f"<strong>{score}</strong>"
134
+ asd.append(f"<div class='rounded-label-product'>πŸ“¦Product {score}</div>")
135
+ elif label == "Customer Service":
136
+ score = f"{output["predicted_score"][1] * 100:.2f}%"
137
+ score = f"<strong>{score}</strong>"
138
+ asd.append(f"<div class='rounded-label-customer-service'>πŸ‘©β€πŸ’ΌCustomer Service {score}</div>")
139
+ elif label == "Shipping/Delivery":
140
+ score = f"{output["predicted_score"][2] * 100:.2f}%"
141
+ score = f"<strong>{score}</strong>"
142
+ asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>")
143
+ # for label, score in zip(output["predicted_labels"], output["predicted_score"]):
144
+ # score = f"{score * 100:.2f}%"
145
+ # score = f"<strong>{score}</strong>"
146
+ # if label == "Product":
147
+ # asd.append(f"<div class='rounded-label-product'>πŸ“¦Product {score}</div>")
148
+ # elif label == "Customer Service":
149
+ # asd.append(f"<div class='rounded-label-customer-service'>πŸ‘©β€πŸ’ΌCustomer Service {score}</div>")
150
+ # elif label == "Shipping/Delivery":
151
+ # asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>")
152
+ if asd == []:
153
+ asd.append("<div class='rounded-label-undefined'>Undefined</div>")
154
+ labels_html = "".join(asd)
155
+ st.markdown(f"<div class='label-container'>{labels_html}</div>", unsafe_allow_html=True)
156
+
157
+ def show_result(outputs):
158
+ st.title("Result")
159
+ # create 2 column
160
+ col1, col2 = st.columns(2)
161
+ with col1:
162
+ st.write("πŸ“‘ Total reviews : ", len(outputs))
163
+ with col2:
164
+ st.write("πŸ–₯️ Model used : ", selected_model)
165
+ for i, output in enumerate(outputs):
166
+ st.markdown(
167
+ f"<p style='color:grey; margin: 0; padding: 0;'>Review {i+1}:</p>",
168
+ unsafe_allow_html=True)
169
+ st.markdown(f"<p style='font-size:20px; margin-bottom: 5px;'><strong>{output['review']}</strong></p>", unsafe_allow_html=True)
170
+ chips_label(output)
171
+ st.balloons()
172
+ # change predicted_labels to dict with key is the label
173
+ new_outputs = []
174
+ for output in outputs:
175
+ temp = output
176
+ temp['predicted_score'] = [
177
+ f"Product {output['predicted_score'][0] * 100:.2f}%",
178
+ f"Customer Service {output['predicted_score'][1] * 100:.2f}%",
179
+ f"Shipping/Delivery {output['predicted_score'][2] * 100:.2f}%"
180
+ ]
181
+ new_outputs.append(temp)
182
+
183
+ df = pd.DataFrame(new_outputs)
184
+ st.write(df)
185
+
186
+ # # Display the scores in a more beautiful way
187
+ # for output in new_outputs:
188
+ # st.markdown("### Predicted Scores")
189
+ # for label, score in output['predicted_score'].items():
190
+ # st.markdown(f"<div style='padding: 5px; border-radius: 5px; background-color: #f0f0f0; margin-bottom: 5px;'>"
191
+ # f"<strong>{label}:</strong> <span style='color: #007BFF;'>{score}</span></div>",
192
+ # unsafe_allow_html=True)
193
+ button_download = st.button("Download as csv")
194
+ if button_download:
195
+ df.to_csv("result.csv", index=False)
196
+ st.success("Result has been downloaded as csv")
197
+
198
+
199
+ if button_submit and pipeline.ready_status:
200
+ submit()
201
+ elif button_submit and not pipeline.ready_status:
202
+ st.error("Models are not ready yet, please wait a moment")
203
+
204
+
Product Reviews Ecommerce Multilabel Dataset.json ADDED
The diff for this file is too large to render. See raw diff
 
model_services/__pycache__/model.cpython-312.pyc ADDED
Binary file (4.05 kB). View file
 
model_services/__pycache__/pipeline.cpython-310.pyc ADDED
Binary file (1.79 kB). View file
 
model_services/__pycache__/pipeline.cpython-312.pyc ADDED
Binary file (3.87 kB). View file
 
model_services/model.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ from huggingface_hub import PyTorchModelHubMixin
4
+
5
+ class IndoBertEcommerceReview(nn.Module, PyTorchModelHubMixin):
6
+ def __init__(self, bert):
7
+ super().__init__()
8
+ self.bert = bert
9
+ self.sigmoid = nn.Sigmoid()
10
+
11
+ def forward(self, input_ids, attention_mask):
12
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
13
+ logits = outputs.logits
14
+ probabilities = self.sigmoid(logits)
15
+ return probabilities
16
+
17
+ class IndoBertCNNEcommerceReview(nn.Module, PyTorchModelHubMixin):
18
+ def __init__(self, bert):
19
+ super().__init__()
20
+ self.bert = bert
21
+ self.conv1 = nn.Conv1d(in_channels=bert.config.hidden_size, out_channels=512, kernel_size=3, padding=1)
22
+ self.pool = nn.AdaptiveAvgPool1d(1)
23
+ self.linear = nn.Linear(512, 3)
24
+ self.sigmoid = nn.Sigmoid()
25
+
26
+ def forward(self, input_ids, attention_mask):
27
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
28
+ last_hidden_state = outputs.last_hidden_state
29
+
30
+ # Permute to [batch_size, hidden_size, seq_len]
31
+ last_hidden_state = last_hidden_state.permute(0, 2, 1)
32
+
33
+ conv1_output = self.conv1(last_hidden_state)
34
+ pooled_output = self.pool(conv1_output).squeeze(-1)
35
+ logits = self.linear(pooled_output)
36
+ probabilities = self.sigmoid(logits)
37
+ return probabilities
38
+
39
+ class IndoBertLSTMEcommerceReview(nn.Module, PyTorchModelHubMixin):
40
+ def __init__(self, bert):
41
+ super().__init__()
42
+ self.bert = bert
43
+ self.lstm = nn.LSTM(bert.config.hidden_size, 128)
44
+ self.linear = nn.Linear(128, 3)
45
+ self.sigmoid = nn.Sigmoid()
46
+
47
+ def forward(self, input_ids, attention_mask):
48
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
49
+ last_hidden_state = outputs.last_hidden_state
50
+ lstm_out, _ = self.lstm(last_hidden_state)
51
+ pooled = lstm_out[:, -1, :]
52
+ logits = self.linear(pooled)
53
+ probabilities = self.sigmoid(logits)
54
+ return probabilities
55
+
model_services/pipeline.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from transformers import BertModel, AutoTokenizer, BertForSequenceClassification
4
+ from model_services.model import IndoBertEcommerceReview, IndoBertCNNEcommerceReview, IndoBertLSTMEcommerceReview
5
+ import streamlit as st
6
+
7
+
8
+ ready_status = False
9
+ bert = None
10
+ tokenizer = None
11
+ indobert_model = None
12
+ indobertcnn_model = None
13
+ indobertlstm_model = None
14
+
15
+
16
+ with st.status("Loading models...", expanded=True, state='running') as status:
17
+ # Load the base model and tokenizer
18
+ bertSequence = BertForSequenceClassification.from_pretrained("indobenchmark/indobert-base-p1",
19
+ num_labels=3,
20
+ problem_type="multi_label_classification")
21
+ bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1")
22
+ tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews")
23
+
24
+ # Load custom models
25
+ indobert_model = IndoBertEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews", bert=bertSequence)
26
+ st.write("IndoBERT model loaded")
27
+ indobertcnn_model = IndoBertCNNEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-cnn-finetuned-ecommerce-reviews", bert=bert)
28
+ st.write("IndoBERT-CNN model loaded")
29
+ indobertlstm_model = IndoBertLSTMEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-lstm-finetuned-ecommerce-reviews", bert=bert)
30
+ st.write("IndoBERT-LSTM model loaded")
31
+
32
+ # Update status to indicate models are ready
33
+ if indobert_model and indobertcnn_model and indobertlstm_model != None:
34
+ ready_status = True
35
+ if ready_status:
36
+ status.update(label="Models loaded successfully", expanded=False)
37
+ status.success("Models loaded successfully", icon="βœ…")
38
+ else:
39
+ status.error("Failed to load models")
40
+
41
+
42
+ # def init():
43
+ # global ready_status, bert, tokenizer, indobert_model, indobertcnn_model, indobertlstm_model
44
+ # try:
45
+ # # Load the base model and tokenizer
46
+ # bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1")
47
+ # tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews")
48
+
49
+ # # Load custom models
50
+ # indobert_model = IndoBertEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews", bert=bert)
51
+ # print("IndoBERT model loaded")
52
+ # indobertcnn_model = IndoBertCNNEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-cnn-finetuned-ecommerce-reviews", bert=bert)
53
+ # print("IndoBERT-CNN model loaded")
54
+ # indobertlstm_model = IndoBertLSTMEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-lstm-finetuned-ecommerce-reviews", bert=bert)
55
+ # print("IndoBERT-LSTM model loaded")
56
+ # ready_status = True
57
+ # return True
58
+ # except Exception as e:
59
+ # print(f"Failed to initialize models: {e}")
60
+ # ready_status = False
61
+ # return False
62
+
63
+ def predict(text: str, model_name: str):
64
+ token_result = tokenizer(text, return_tensors="pt")
65
+ model = None
66
+ if model_name == "IndoBERT":
67
+ model = indobert_model
68
+ if model_name == "IndoBERT-CNN (Best)":
69
+ model = indobertcnn_model
70
+ if model_name == "IndoBERT-LSTM":
71
+ model = indobertlstm_model
72
+ input_ids = token_result['input_ids']
73
+ attention_mask = token_result['attention_mask']
74
+ with torch.no_grad():
75
+ logits = model(input_ids=input_ids, attention_mask=attention_mask)
76
+ preds = torch.sigmoid(logits).detach().cpu().numpy()[0]
77
+ return preds
78
+
79
+ def get_label(preds):
80
+ labels = ["Product", "Customer Service", "Shipping/Delivery"]
81
+ result = [label for i, label in enumerate(labels) if preds[i] > 0.6]
82
+ return result
83
+
84
+ def get_result(reviews: list[str], model_name: str):
85
+ outputs = []
86
+ for review in reviews:
87
+ preds = predict(review, model_name)
88
+ labels = get_label(preds)
89
+ output = {
90
+ "review": review,
91
+ "predicted_score": preds,
92
+ "predicted_labels": labels
93
+ }
94
+ outputs.append(output)
95
+ return outputs
pages/Dataset.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # streamlit
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import numpy as np
5
+ # import matplotlib.pyplot as plt
6
+ # from wordcloud import WordCloud
7
+
8
+ st.set_page_config(page_title="Dataset", page_icon="🏠")
9
+
10
+ # help me create sidebar
11
+ st.sidebar.markdown("## πŸ“š About"
12
+ "\nThis is a simple web app to classify the aspect of reviews from an e-commerce dataset."
13
+ "\n\nThe dataset used is a multilabel dataset, which means a review can have multiple labels."
14
+ "\n\nThe labels are:"
15
+ "\n- πŸ“¦ **Product**"
16
+ "\n- πŸ‘©β€πŸ’Ό **Customer Service**"
17
+ "\n- 🚚 **Shipping/Delivery**")
18
+
19
+ # add create by Fahrendra Khoirul Ihtada and Rizha Alfianita using streamlit and Hugging Face's IndoBERT model
20
+ st.sidebar.markdown("## πŸ‘¨β€πŸ’» Created by"
21
+ "\n[Fahrendra Khoirul Ihtada](https://www.linkedin.com/in/fahrendra-khoirul-ihtada/) "
22
+ "and [Rizha Alfianita](https://www.linkedin.com/in/rizha-alfianita/)"
23
+ "\n Using Streamlit and Hugging Face's [IndoBERT](https://huggingface.co/indobenchmark/indobert-base-p1) model.")
24
+
25
+ # add my hugging face profile
26
+ st.sidebar.markdown("## πŸ€– Hugging Face"
27
+ "\n- [Fahrendra Khoirul Ihtada](https://huggingface.co/fahrendrakhoirul)")
28
+
29
+ # Title and Caption
30
+ st.title("πŸ“ŠDataset Overview")
31
+
32
+ # Descriptive text
33
+ st.write("""
34
+ This dataset is full of customer reviews that give us a great idea of what it's like to buy things online. The reviews talk about everything from how good the product is to how fast it got here and how helpful the seller was""")
35
+
36
+ # Dataset link
37
+ st.markdown("[Access the Dataset](https://huggingface.co/datasets/fahrendrakhoirul/ecommerce-reviews-multilabel-dataset)")
38
+
39
+
40
+ df = pd.read_json("Product Reviews Ecommerce Multilabel Dataset.json", lines=True)
41
+ st.write(df)
42
+
43
+ # # Combine all reviews into a single string
44
+ # all_reviews = " ".join(df['review']) Β 
45
+
46
+
47
+ # # Generate the word cloud
48
+ # wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_reviews)
49
+
50
+ # # Display the word cloud
51
+ # plt.figure(figsize=(10, 6))
52
+ # plt.imshow(wordcloud, interpolation='bilinear')
53
+ # plt.axis("off")
54
+ # plt.show()
55
+
56
+ # st.pyplot(plt.gcf())
57
+
58
+ # # Create a bar chart for sentiment analysis (example)
59
+ # # Assuming you have a column 'sentiment' in your dataframe
60
+ # # st.write("**Distribusi Sentimen**")
61
+ # # sentiment_counts = df['sentiment'].value_counts()
62
+ # # st.bar_chart(sentiment_counts)
requirements.txt ADDED
File without changes
tes.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import numpy as np
4
+ from huggingface_hub import PyTorchModelHubMixin
5
+ from transformers import BertModel, AutoTokenizer
6
+
7
+ class IndoBertLSTMEcommerceReview(nn.Module, PyTorchModelHubMixin):
8
+ def __init__(self, bert):
9
+ super().__init__()
10
+ self.bert = bert
11
+ self.lstm = nn.LSTM(bert.config.hidden_size, 128)
12
+ self.linear = nn.Linear(128, 3)
13
+ self.sigmoid = nn.Sigmoid()
14
+
15
+ def forward(self, input_ids, attention_mask):
16
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
17
+ # print(outputs.keys())
18
+ last_hidden_state = outputs.last_hidden_state
19
+ lstm_out, _ = self.lstm(last_hidden_state)
20
+ pooled = lstm_out[:, -1, :]
21
+ logits = self.linear(pooled)
22
+ probabilities = self.sigmoid(logits)
23
+ return probabilities
24
+
25
+ bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1")
26
+ tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews")
27
+
28
+ indobertlstm_model = IndoBertLSTMEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-lstm-finetuned-ecommerce-reviews", bert=bert).to('cpu')
29
+
30
+ # run modell
31
+ res_token = tokenizer("hahahah", return_tensors="pt").to('cpu')
32
+ input_ids = res_token['input_ids'] # Unpack dictionary
33
+ attention_mask = res_token['attention_mask']# Unpack dictionary
34
+
35
+ print(res_token)
36
+ with torch.no_grad():
37
+ logits = indobertlstm_model(input_ids=input_ids, attention_mask=attention_mask)
38
+ preds = torch.sigmoid(logits).detach().cpu().numpy()[0]
39
+
40
+ print(preds)